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1. Summary 

This technical report outlines the capabilities of Robotic Interactive Visualization 
Experimentation Technology (RIVET), a computer-based simulation environment, 
as a Human Factors platform for human-in-the-loop (HITL) human-robot 
interaction (HRI) experimentation. This system was originally designed by the US 
Army Research Laboratory’s (ARL) Robotics Collaborative Technology Alliance 
(ARL 2012). The purpose for the simulation tool was to provide engineers with a 
means to test and debug intelligence and perception algorithms for autonomous 
unmanned vehicles prior to field exercises. Here, we have adapted the software to 
allow users to work cooperatively with unmanned systems to address the human 
element of HRI. HRI experimentation using simulation supports the capability to 
assess performance, individual differences, preferences, concerns, and potential 
issues that may directly or indirectly impact the design of the system for multiple 
future Soldier-robot teaming operations. This report provides a primer for the 
nonprogrammer with example TorqueScript files and step-by-step instructions to 
develop virtual environments (VEs) for HRI experimentation. Additional 
recommendations for subjective and objective human data collection tools related 
to HRI are discussed. 

2. Introduction 

ARL’s Intelligent Systems Enterprise vision is to enable the teaming of 
autonomous intelligent systems with Soldiers in dynamic, unstructured combat 
environments, as well as in noncombat military installations and base operations. 
To accomplish this vision for interdependent Soldier-robot teaming, there has been 
a paradigm shift in robotic research conducted by ARL from the current 
instantiation of fielded remote-controlled or teleoperated robots to systems with 
increased intelligence, decision-making capability, and autonomy (Groom 2008; 
Chen and Terrence 2009; Phillips et al. 2011; Schaefer 2013). This type of teaming 
is needed for future joint, interdependent, network-enabled operations.  

While the technological capabilities of robotic systems are advancing by the day, 
many of these new systems are still in the early stages of research and development. 
In many cases, areas of need or potential use have been identified, preliminary 
requirements have been created, and engineering solutions for prototype systems 
have been researched. However, the human element must be considered early on in 
this design process, because without considering human factors, such as human-
system interfaces, performance, as well as trust and expectation, the potential result 
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will lead to limited or inappropriate use of the system (Parasuraman and Riley 1997; 
Lee and See 2004).  

Computer-based simulation provides a safe, economical, and efficient means to 
assess HRI throughout the robot life cycle. The following sections of the 
introduction include a brief overview of HRI and HRI metrics, a description of how 
HRI can be included into robotic technology research and development, and an 
overview of the benefits of using simulation for HRI experimentation. This will 
then lead to a description and main purpose of this report: how to use the RIVET 
computer-based simulation system for HRI experimentation. A primer for the 
nonprogrammer with example TorqueScript files and step-by-step instructions to 
develop the VE is provided in the appendixes. 

2.1 Human-Robot Interaction 

HRI is “a field of study dedicated to understanding, designing, and evaluating 
robotic systems for use by or with humans” (Goodrich and Schultz 2007). The study 
of HRI is a relatively new field (emerging in the mid-1990s), but one that is gaining 
traction because of the increase of robotic technology in both the public and 
government, particularly defense applications. As with any new field of study, 
researchers are still developing a common understanding of metrics and evaluation 
techniques. Many different researchers have attempted to develop a common 
ground for understanding and measuring HRI, each of which has provided some 
additional insight into this problem. However, specific lines of research have taken 
specific perspectives to experimentation as a means to obtain generalizable 
knowledge. A problem with this type of methodology is that it results in context-
specific or task-specific findings that may or may not be generalizable to other 
domains or applications. In addition, a number of measurement techniques exist, 
including self-report measures, behavioral measures, task performance, and 
psychophysiological measures (Bethel et al. 2007). Each type of measurement has 
its own unique benefits and limitations. In the following paragraphs, we briefly 
reference some key findings that may be helpful as researchers seek to better 
incorporate HRI assessment into computer-based simulation research.  

We begin by highlighting the work by Steinfeld et al. (2006), which attempts to 
identify metrics that can be used across robot domains and applications. They 
suggest the importance of clearly identifying what they call the “task-oriented” 
requirements, instead of the “task-specific” requirements. This publication is a 
well-recognized description of common metrics for HRI. The common task-
oriented metrics identified in this work include navigation, perception, 
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management, manipulation, and social interaction. The following bullets list the 
associated measureable items for each metric. 

• Navigation throughout the environment: effectiveness (percent of tasks 
complete, deviation from planned route, and number of obstacles avoided); 
efficiency (time to complete task, operator time for task, and average time 
for obstacle extraction); and workload (the number of interventions by the 
user);  

• Perception about objects in the environment based on sensor input:  
detection measures; recognition measures, such as classification; judgments 
about the distance, size, or length of the environment; estimates of absolute 
and relative motion;  

• Management of the actions of humans and robots: fan out; intervention 
response time; level of autonomy discrepancies;  

• Manipulation of the robot interacting with the environment, such as 
grasping, pushing, or payload drop-off: degree of mental computations and 
contact errors; and  

• Social interaction: interaction characteristics; persuasiveness of the robot; 
trust; engagement; compliance.  

Goodrich and Schultz (2007) identified key challenges specific to uncertainty 
related to unstructured and extreme environments; risk to people due to their 
proximity and vulnerability in the interaction; the integration of appropriate social 
and emotional aspects of interaction; and issues with integrating natural language 
into human-robot communication paradigms. They identified multiple design-
based attributes that can affect the interaction of humans with robots. These 
included the following:   

• The level and behavior of autonomy: neglect tolerance;  

• Nature of information exchanged: interaction time, mental workload, 
situation awareness, common ground;  

• Structure of the team: fan-out, role of the team;  

• Adaptation, learning, and training of people and the robot; and  

• Task-shaping: goal-directed task analyses, cognitive work analyses, and 
ethnographic studies.  
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More recently, Weiss et al. (2009) took a social approach and developed an 
evaluation framework for measuring HRI. This framework focuses on the usability 
(e.g., effectiveness, efficiency, learnability), social acceptance (e.g., performance 
expectations, effort expectancy, attitudes toward the technology), user experience, 
and societal impact (e.g., consequences to the social life of a specific community 
following the introduction of a robot).  

As robotic design continues to move toward interactive collaborative teaming with 
people, additional HRI metrics have emerged. These first specify the importance of 
communication, highlighting specific elements that can be measured from the 
human. For example, analyzing speech and gesture patterns can be used to identify 
goal inference, anticipatory action selection, and congruence of information (Bicho 
et al. 2010). This type of analysis may also benefit from identifying speech-based 
interaction in terms of both action-only speech versus action speech with a 
descriptor. Cassenti et al. (2011) found that people were more successful in 
directing robots during a navigation task if location labels (e.g., structural parts of 
a building) were used and understood by the robot. A second recent area of study 
associated with HRI metrics has identified the importance of measuring situation 
awareness. This can be accomplished by assessing the stages of information 
processing (i.e., information acquisition, decision making, and action 
implementation), control allocation, attentional control, multitasking, and task 
switching (Chen and Barnes 2014).  

Most recently, Murphy and Schreckenghost (2013) reviewed 29 papers regarding 
metrics associated with HRI. They reported that this is an area still being developed 
and understood. Their key findings related to the human-robot team or system are 
reported as follows: 

• Productivity (effectiveness): team productivity, task difficulty, and time 
(autonomous versus manual operations) 

• Efficiency: amount of effort, human-robot ratio, interaction, ratio of 
operator time to robot time, and total time to complete task 

• Reliability: false alarms, flexibility, interventions, level of automation 
discrepancies, similarity, and time (intervention response time, unscheduled 
manual operations) 

• Safety: risk to people, robot awareness of people 

• Coactivity: cognitive interaction, crypsis coefficient, degree of 
monotonicity, neglect tolerance, plan state, percent of requests from 
operator and robot, task allocation, and time in unscheduled manual 
operations 
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As can be seen by this brief review of the HRI domain, there is a direct interplay 
between use and design that should be further explored and understood. In the 
following subsection we begin to address the importance of including HRI into 
simulation.  

2.2 HRI and Computer-Based Simulation 

According to Dautenhahn (2007), incorporating HRI evaluation into the robot’s 
design and development process has a number of challenges that stem from 
integrating an interdisciplinary approach with technological design. However, 
taking the human into consideration throughout this process may help to alleviate 
previously established issues related to nonuse, misuse, disuse, or abuse of 
developed systems (Parasuraman and Riley 1997), leading to a greater return on 
investment. Additionally, HITL research and development becomes progressively 
more important as robots continue to move into an integrated team member role.  

Simulation provides the opportunity for collaboration between Soldiers and 
unmanned platforms at multiple levels in the design process. This can help to guide 
the design process and provide needed information back into development. The 
inclusion of simulation into the design process is not a new concept. For example, 
simulation is a cost-effective strategy often used throughout the entire life cycle of 
software development to identify real-time performance shortfalls and to develop 
risk-resolution techniques (Boehm 1988). Here we suggest that the modeling and 
simulation process is important for the study of human and robot interaction. Loper 
(2015) describes the modeling and simulation process in the following steps:  

• Establish purpose and scope: problem statement 

• Formulate a conceptual model: abstraction of the real-world system under 
investigation, goals  

• Acquire and analyze data: requirements gathering 

• Develop simulation model and program: operational model and computer 
implementation 

• Verify and validate model and simulation: accuracy of conceptual model, 
requirements, and representation of the real-world 

• Design experiments with specific details: length, number of 
runs/replications, manner of initialization (e.g., training) 

• Execute simulation and analyze output: estimate measures of performance, 
and update analysis and design elements 
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For the purposes of this work, we are focusing on virtual or computer-based 
simulation. More specifically, we are interested in the benefits of HITL simulation 
at the research and development stages. While one key benefit of simulation is rapid 
and systematic development and assessment of technology, the process by which a 
human uses or understands the benefits of the technology can directly impact the 
process by which a system will be used in the future. Here, we suggest that 
incorporating HITL simulation experimentation early on in the research and 
development process can benefit the analysis, design, and development stages for 
robotic technology.  

Computer-based simulation has become an important part of HITL 
experimentation, and provides a number of benefits, primarily those related to cost 
and safety across a number of applications areas. More recently, this type of 
experimentation has been used to assess HRI. Types and uses for simulation include 
prototype design and development (e.g., algorithm testing, sensor design, and 
control interfaces), training and practice interacting with robotic systems, and 
transitions to real-world robotics.  

Within HRI, benefits of simulation include time and cost benefits due to rapid and 
repeatable assessment of HRI. The recommendation for simulation use for HRI 
experimentation took root in the 1980s with Sheridan’s (1986) research into the 
human’s supervisory control of robotic space systems. While he recommended that 
both computer simulation and hardware prototype development are needed for 
design and development, a key benefit of simulation is time due to the quick and 
systematic adaptations of the robotic system. In the following decade, research 
demonstrated cost-related benefits through a reduction in development time and 
required financial need. For example, Michel (1998) demonstrated this cost benefit 
through the development of the Webots simulator for robotic prototype 
development. This simulator allowed for the successful design of the mechanical 
structure of robots, as well as the development of intelligent controllers. The 
success of this approach was attributable to the rapid and repeated testing that was 
not possible with real-world systems. In addition, the scarcity and expense of real-
world robotic systems also made simulation a viable option to test human 
perception, situation awareness, and teamwork, as seen with unmanned search and 
rescue robots (Nourbakhsh et al. 2005; Lewis et al. 2007).  
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The medical robotics community has identified some training benefits of 
integrating HRI principles into simulation systems. In a review of the research, 
Kunkler (2006) suggested that the similarities between computer simulation tools 
and robotic surgery systems (e.g., mechanized feedback, monitors to visualize task, 
and similar computer software for HRI) provided successful training opportunities 
for physicians, while maintaining personal and patient safety. In addition, 
Basdogan et al. (2004) suggested that the inclusion of haptic interfaces, rendering, 
and recording, as well as playback options into the computer simulation, can 
significantly improve training transfer to real-world robotic systems. 

This goal of successful transfer from simulation to real-world HRI is a common 
theme across all domains of robotics. One common practice is the development of 
compatible source codes (e.g., robot motion [Davies 2000] and Webots [Michel 
1998]). For example, in their research comparing a virtual and real-world Pioneer 
robot, Gerkey et al. (2003) suggested that while there is no guarantee for direct 
comparability between simulation and real-world robotic systems, there is promise 
of such transfer when testing new sensors or control interfaces prior to hardware 
development.  

3. RIVET and CARVE for HRI Experimentation 

Simulation has opened the door to understand and assess the human, as well as 
components of the interaction, early on in the design process. This allows 
researchers and roboticists to begin to assess the interaction-specific design 
elements proactively rather than retroactively. Many HRI studies have begun to 
rely on simulation for some element of experimentation. Many platforms are used 
to assess interaction with algorithms, such as planning algorithms (Sycara and 
Lewis 2003) and for testing human preferences and behaviors toward sensors 
(Hughes and Lewis 2004). Simulation is also used to study elements of 
communication with robots, including haptics (Her and Hsu 2001), semantic maps 
(Nielsen et al. 2004), and bidirectional communication (Rickheit and Wachsmuth 
2008). Individual differences and elements of teaming have also been studied using 
simulation. These include topics such as workload and situation awareness 
(Parasuraman et al. 2003), as well as control of multiple robots (Olsen and Wood 
2004; Chen et al. 2010). HRI-oriented simulation should also “accurately [reflect] 
the range of available information, behavior, and user experience encountered in 
actual robot operation” (Lewis et al. 2007, 101). 
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3.1 Overview of RIVET 

In this section, we provide an overview of the Robotic Interactive Visualization and 
Experimentation Technology (RIVET) simulation environment. RIVET version 
1.0 was built using the Torque Game Engine (TGE) version 1.5.2, designed by 
GarageGames. It was designed by the ARL’s Robotics Collaborative Technology 
Alliance (RCTA) to allow engineers to test and debug intelligence and perception 
algorithms for autonomous unmanned vehicles prior to field exercises (ARL 2012). 
While field exercises provide a valuable insight on the performance of mobility and 
perception algorithms, the amount of time needed for field exercises must be used 
wisely. The cost to conduct data collection and testing in the field is substantially 
more than time spent in the lab conducting testing. This cost not only includes a 
financial cost, but also a time-associated cost in that it is difficult to organize and 
coordinate multidisciplinary integration sessions. Simulation tools like RIVET can 
provide an essential initial evaluation of robotic algorithms and concepts in 
simulated environments that can be varied systematically.  

While RIVET was originally designed to test and debug algorithms, the design and 
capabilities of the software lend themselves to the development of HRI-specific 
missions with unmanned ground vehicles (UGVs), which is the focus of the 
remainder of this report. RIVET provides the underpinning for autonomous 
movement that allows experimentation regarding the interaction of Soldiers and 
these highly technical mobile vehicles. The following sections describe the 
extensive effort allocated to the adaptation and advancement of RIVET to be used 
for HRI experimentation purposes.  

3.1.1 General Capabilities 

Like most commercial off-the-shelf game engines, the TGE provides functionality 
for graphics, physics, artificial intelligence, lighting, and many other features. It 
provides all the necessary attributes and core functionality to conduct virtual 
experiments. Building a simulated environment involves several different activities 
necessary for HRI experimentation: 1) creating the virtual terrain surface, 2) adding 
static features typically found in the scene, 3) adding dynamic elements, such as 
people and vehicles, 4) producing the interactive graphical user interfaces (GUIs), 
5) choosing the unmanned platform for the exercise, 6) implementing a user 
interface for the UGV, and finally, 7) assessing the user during a study. Specifics 
relating to each of these will be discussed in detail in Section 4 (Procedures for 
Using RIVET and HRI Experimentation).  
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3.1.2 Hardware/Software Considerations 

The game engine adopts a client-server architecture. This is because it is designed 
for networking multiple systems together to play a game between multiple remote-
located users. However, RIVET can be used in single-user mode or multi-user 
mode depending on the problem statement and research goals. In single-user mode, 
RIVET loads the scene and then a user is able to access the world editor, GUI editor, 
or control an avatar (Soldier, vehicle, etc.) through the mission area using keyboard 
or joystick. Multi-user mode allows up to 64 local area networked users to join the 
mission as clients. These clients can be another vehicle, robot, Soldier, or a sensor 
that is attached to an entity in the simulation. Currently, the choice of additional 
vehicle sensors within RIVET are cameras, laser detection and ranging (LADAR), 
and a custom interface used to connect other applications to the simulation 
environment. Sensors can be local to the initial server client machine or they can 
be a remote sensor as a client on a different machine. The key to determining which 
is right for the mission depends on the angle of view for the sensor. The local sensor 
view is what the server camera is projecting. If a different camera sensor view is 
needed, a separate computer running as a client will be used to connect to the 
vehicle, and then that graphics processor unit is used to develop the sensor scene 
(e.g., rear-view camera for traveling in reverse). General specifications relating to 
the quality of the computers, graphics cards, etc. can be found in the RIVET 
Developer’s Guide (General Dynamics Robotics Systems 2010, 17). 

3.1.3 RIVET Menu Options 

Through the RIVET main menu (Fig. 1), there are customization options that are 
available through buttons at the bottom of the menu screen. It is possible to load a 
customized user mission (Server computer), join a mission (Client computer), or 
mount a sensor to a vehicle or robot on the RIVET server computer (Client 
computer). In addition, the configuration menu allows customization of the video 
screen size, resolution, and vehicles. Appendix A provides more RIVET menu 
options.  



 

Approved for public release; distribution is unlimited. 

10 

 

Fig. 1 RIVET Main Menu GUI 

For a majority of our HRI-related research, we need to have more human interaction 
with the robot/autonomous vehicle than observing a camera sensor only. Therefore, 
the recommended setup is the 3-computer setup with the RIVET server, the 
additional client sensor, and the user interface application for extra control and 
integration of the UGV. The RIVET architecture also allows for the connection of 
outside applications by mounting a Basic Operations Layer Transmissions (BOLT) 
sensor to the vehicle. The BOLT libraries allow external interfaces to connect with 
the simulation (more information can be found in the Application Program 
Interface, which is included with the software). One such application is the Control 
for Autonomous Robotic Vehicle Experiments (CARVE) user interface application 
(discussed in detail in Section 3.2). The Server, Client, and CARVE Application 
computers are connected through an Ethernet local area network (LAN), using a 
Gigabit switch (Fig. 2). 
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Fig. 2 RIVET and CARVE setup for single user, remote sensor, or GUI combination 

3.2 Overview of CARVE 

CARVE is written in C Sharp (C#), allowing the use of all of the Microsoft .NET 
libraries. As its name implies, additional robotic vehicle control is the main 
functionality of CARVE. For example, CARVE provides customizable integration 
of new user interface controls for the simulated vehicle, as well as feedback 
displays to the participant. There was additional work completed to utilize CARVE 
as an autonomous driving station for human use experiments. This included the 
capability to mirror autonomous vehicle behavior through the integration of 
dynamic waypoints (in CARVE) and trigger points (in RIVET). Both RIVET and 
CARVE are customizable in terms of recording data from the vehicle (speed, 
health, time, location, etc.), environment (non-player character movement, triggers, 
and events), as well as user input (function allocation, time, number of 
interventions). Finally, CARVE provides additional capabilities and 
customizations to the RIVET platform to advance HRI experimentation, including 
visual feedback of vehicle statistics, dynamic map capabilities, and the inclusion of 
additional tasks (e.g., radar detection task). This added functionality and control is 
depicted in Fig. 3 and allows HRI assessment to occur early in development. 
Examples of the CARVE menus are provided in Appendix B. 
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Fig. 3 Customizable simulation environment for HRI (RIVET, BOLT, CARVE) 

Additional descriptions and capabilities of this software, as well as specific 
modifications for HRI experimentation, will be discussed through Section 4 
(Procedures for Using RIVET for HRI Experimentation). We note here that 
CARVE may not be currently set up to meet every possible need for HRI 
experimentation; however, additional user interfaces can be programmed to 
function within CARVE. This may require more advanced knowledge of computer 
programming, specifically in C#.  

4. Procedures for Using RIVET for HRI Experimentation 

The design and development of RIVET, and the associated CARVE application, 
are valuable tools for HRI experimentation. In this section, we provide key 
descriptions of the components and customization capabilities of this simulation 
system. As such, RIVET and CARVE can have a wide range of HRI operations, 
from combat-specific operations (e.g., surveillance, cordon, and search) to base 
operations (e.g., passenger transit using a self-driving vehicle). However, different 
types of customization require varying levels of computer programming 
knowledge, which are noted throughout the following sections. Step-by-step 
directions for using RIVET are then provided in the appendixes.  

4.1 Initial Research Definition  

Before starting the mission setup, the HRI experimenter should have a research 
question, a set of robot system requirements, and an application. Based on this 
information, it is beneficial to create a storyboard of the scenario or use case (Preece 
et al. 2015). This will help the experimenter outline the necessary elements that will 
be needed in the development of the VE. This may include the location (e.g., Middle 
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Eastern town versus US military post), terrain and weather specifications, potential 
risks, stationary and dynamic objects, anticipated or actual robot capabilities and 
behaviors, as well as the team goals and objectives. Directions on how to create a 
new mission environment are provided in Appendix C.  

4.2 Setting up the Mission  

4.2.1 Virtual Terrain 

The first step in developing the VE in RIVET is to build the virtual terrain. The 
current setup and components of RIVET are such that a user with a basic computer 
science background has sufficient knowledge to develop the virtual terrain. When 
starting to develop a new virtual terrain, we first recommend exploring the missions 
that already exist in RIVET. Available mission files can be accessed through the 
Main Menu (Fig. 4) by choosing a file from the Loading Mission screen (Fig. 5). 
This will allow HRI experimenters the opportunity to see what environments have 
already been built and could be leveraged for their needs.   

 

Fig. 4 Main Menu screen 
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Note: The red box highlights the areas related to current default missions that have been 

previously created. 

Fig. 5 Load Mission screen 

It is possible that none of the available mission environments are a direct match for 
the current research goal. If this is the case, it is still possible to begin with a base 
environment and customize it to meet the specific needs of the mission. The ARL 
Test World is a recommended option to start to develop a new mission file. It has a 
relatively blank canvas, containing only a Soldier following a path and a small 
building. After entering the VE, it is possible to adapt the terrain to match the needs 
of the mission. The terrain is sculpted using the RIVET terrain editor tools. These 
tools permit changes in the appearance of the terrain using different textures that 
represent rocks, gravel, grass, dirt, or the forest floor. Instructions for adapting the 
terrain are provided in Appendix D. More artistic models, such as grass and trees, 
are also available by adding static objects.  

4.2.2 Static Objects 

The TGE allows the programmer to create realistic simulated terrains that can be 
textured and shaped to give an appearance of any setting desired. To illustrate the 
complexity that can be created with the editing tool, Fig. 6 shows a virtual Middle 
Eastern market place with streets, stalls, and buildings. Each one of these items 
must be carefully positioned to reflect a marketplace in a developing country. 
Depending on complexity, a scene may contain hundreds or thousands of objects. 
Making a scene look professional may require a lot of work and time, but the 
realism may aid testing and the capability to transition findings to the field. 
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Fig. 6 Complex world building 

The TGE has built-in tools that allow the programmer the ability to tailor the scene. 
The World Editor is accessed by pressing the F11 key on the keyboard. Figure 7 
shows the marketplace objects augmented with entity names shown in white. In this 
view, each yellow dot represents a different object, such as a building, burned-out 
car, and even the electrical lines. This is where objects can be added, deleted, or 
moved along each axis (see also Appendix E). Each object may also be rotated in 
any direction along each axis. Notice that many of the objects are tagged with the 
“null” label. This means that the object has not been assigned a specific name 
during the creation of the scene. Naming each object is possible through the 
TorqueScript files, the console, or the World Editor Inspector. The purpose of the 
World Editor Inspector is to allow the evaluator to inspect and modify parameters 
for individual objects. This is where the position, rotation, scale, name, and many 
different dynamic fields can be changed. These tools are essential to building a 
realistic environment.
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Fig. 7 Example of the view from the World Editor Inspector 

All objects within the scene are defined in a mission file, which is saved as a text 
file. Each object is listed along with its respective parameters. A static object is 
defined in the mission file as shown in Fig. 8. 

 

Fig. 8 Example TorqueScript for a static object located within the Mission File 

4.2.3 Dynamic Objects: Vehicles 

There are many assets developed for use within the simulation (Fig. 9). The vehicles 
can move about using direct user control through keyboard or joystick, script-based 
path following, or file-based waypoint following using either time on target or 
locations and velocity data. The unmanned vehicles consist of entities from the 
following classes:  

• Unmanned ground vehicles 

• Unmanned air vehicles 

• Unmanned surface vehicles 
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• Unmanned underwater vehicles 

• Small unmanned ground vehicles  

 

Fig. 9 Examples of unmanned systems available within RIVET 

Specific missions may also require additional non-player vehicles to have 
preprogrammed movements throughout the mission space. Here, the term non-
player is included to differentiate between vehicles that will be autonomously 
moving in the VE from player vehicles that a participant has an option to control. 
The current version of RIVET has some path-following vehicles already available 
(Fig. 10). It is important to note that these dynamic elements used in a scenario 
require code to control their actions. Animations are created within modeling tools 
such as Autodesk 3ds Max, and controlled with script to allow movement of 
objects. TGE uses a scripting language, aptly named TorqueScript, to provide the 
control of these dynamic elements. It is beyond the scope of this report to provide 
an in-depth discussion of TorqueScript. The works of Maurina (2006) and Finney 
(2007) provide more information.  
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Fig. 10 Examples of path-following vehicles in RIVET 

Step-by-step directions on adding a path and a path-following vehicle to the mission 
file are available in Appendix F and Appendix G, respectively. With these 
directions, the vehicle will appear by default when the mission file is opened. The 
vehicle will continue on the path provided. If the mission file is saved, the vehicle 
will begin at the last saved point the next time the mission file is opened.  

4.2.4 Dynamic Objects: People 

Human characters are commanded using direct user control, scripted path 
following, or crowd logic. Similar to the above descriptions on path-following 
vehicles, it is also possible to have path-following people, also referred to as non-
player characters, or NPCs. These NPCs currently include civilians, Soldiers, and 
enemy combatant characters. It is also possible to trigger the NPC to spawn (also 
known as the creation or appearance of a character) on the path at a set point in 
time, as well as trigger the NPC to disappear at a set time and location. A trigger is 
“a volume of space that initiates script callbacks when an object enters, stays inside, 
or leaves the trigger’s volume” (http://docs.garagegames.com/torque-
3d/reference/classTrigger.html#_details). More specifically, a trigger causes an 
event to happen. Having the option to create or delete the NPC allows the 
experimenter more flexibility and consistency between runs or trials. However, this 
requires additional computer programming, as well as additional TorqueScript 
files. Step-by-step examples, including the triggers to create and delete path-
following Soldiers are provided in Appendix H and Appendix I, respectively.  

At times, it is more beneficial to use the crowd logic than to create multiple paths 
for many individuals. Figure 11 shows a flurry of activity among Soldiers and 
civilians. These crowds were generated using the Crowd Editor, a tool designed to 
add groups of simulated NPCs to specified regions of the VE. Within this region, 
the people move, interact, and mill about simulating a realistic marketplace. 
Directions for adding crowds are provided in Appendix J.  
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Fig. 11 Example of crowd modeling in RIVET  

The RIVET Crowd Editor is a C# application that allows a user to add groups of 
NPCs to a mission through a GUI. The GUI allows for configuring, adjusting, and 
controlling these simulated crowds. The editor is used to add crowd entities with a 
specific number of objects, their type, and the percentage of each character type. 
The editor also has the feature where the user chooses the number of destinations 
and how long the NPCs are idle once they reach their destination. The Crowd Editor 
GUI is shown in Fig. 12. 

 

Fig. 12 Crowd Editor GUI in RIVET 

 
 

[1] Map View shows all the 
visual crowd data that is being 
applied to the selected map. 
[2] Add and Remove is used to 
add and name a crowd as well as 
to delete it.
[3] Crowd List provides a list of 
all the crowds created for the 
selected map.
[4] Property View enables you 
to configure and edit all the 
aspects for the specific crowd 
selected from the Crowd List.
[5] Description Window shows 
a description of the selected 
property in the Property View.
[6] Tool Box supplies all the tools
used to create and generate the 

crowd.
[7] Menu allows user to load a 
map, load crowds, or save a 
mission.
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4.3 Robot Autonomy 

Up until this point, options and modifications that are specific to RIVET have been 
described. However, scenarios using advanced vehicle or robot autonomy require 
the integration of the BOLT sensor and the CARVE application. Since missions 
can require a user to intervene and “drive” a vehicle, it was important to devise a 
way to communicate with the vehicle in the simulation. The BOLT interface was 
developed to allow communication over the network. The User Datagram 
Protocol/Internet Protocol (UDP/IP) is used for communication outside of the 
application. The BoltPMmount code in the game engine allows access through 
UDP/IP. The BOLT code allows the CARVE GUI to communicate through to the 
game engine. Commands are sent from the GUI to the vehicle, directing movements 
based on inputs from the code, keyboard, joystick, or steering wheel. 

The platform mobility code provides access to the vehicle information while the 
BOLT sensor provides access to the camera buffers. The configuration menu on the 
RIVET startup screen allows for construction of vehicles, as well as sensors. To 
use a vehicle in the application, a vehicle is first selected, named, and then sensors 
are added. A separate computer running RIVET can mount a BOLT sensor to 
connect to the server computer. With a vehicle properly configured with BOLT, the 
CARVE application is able to connect to RIVET. Directions on how to connect to 
CARVE are provided in Appendix K.   

4.3.1 Teleoperation, Remote Control, Manual Control 

CARVE is designed to work with a number of controllers, which provides increased 
flexibility in the experimental design. Adapting the CARVE program code to set 
the controllers may require a more in-depth understanding of computer 
programming. However, it is possible to customize a variety of controllers, 
including the following: keyboard, mouse, touch screen GUI, Logitech Gamepad, 
Logitech joystick, Logitech G27 wheel and pedals, Microsoft Kinect, and other user 
interfaces (e.g., engage/disengage buttons).  

The original controllers available for use with CARVE were the keyboard and 
mouse, a Logitech gamepad, and a touch screen track ball. The keyboard and mouse 
controls were designed to mirror the user interface and key commands described in 
the RIVET Developer’s Guide (General Dynamics Robotic Systems 2010, 48). The 
Logitech gamepad controls were designed to provide additional fidelity for 
interaction with a vehicle. In addition, each button is programmable, and can be 
used for dual-task experimentation. Figure 13 provides a visual representation for 
the current Logitech setup. 
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Fig. 13 Logitech gamepad controller current button layout 

The touch screen track ball controls for speed and movement are directly on the 
CARVE application screen (Fig. 14). This controller interface is very similar to a 
joystick. The user will move the circular thumb pad to drive the vehicle in the 
direction the center ball is moved. The farther from center the ball moves, the faster 
the speed at which the vehicle moves. 

 
Note: The red text and outline are of buttons are used here to demonstrate key parts of the GUI for 

demonstration purposes only. They are not part of the actual GUI. 

Fig. 14 Touch screen track ball for driving controls 
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To meet the diverse needs for a variety of experiments, CARVE has been updated 
with the capabilities to use the Microsoft Kinect sensor, the Logitech G27 Racing 
Wheel and Pedals, as well as additional engineered controllers (e.g., button 
activation controls). These additional user inputs allow for more experimental 
control.  

The Kinect sensor is a low-cost (~$150) video and depth sensor with an open source 
software development kit that allows developers to use the device for gesture input, 
as well as spoken language (Fig. 15).  

 

Fig. 15 Microsoft Kinect sensor 

To update the CARVE for manual and autonomous self-driving vehicle 
capabilities, controls for the Logitech G27 Racing Wheel were also added to the 
CARVE software. The current functionality allows for full manual control driving. 
In addition, an automation button system was built and programmed to engage and 
disengage the vehicle’s automation. These controllers, when used together, allow a 
user to switch between autonomous self-driving vehicle control and manual control 
(Fig. 16). 
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Fig. 16 Logitech G27 racing wheel and pedals, and additional button controls 

4.3.2 Waypoint Following 

CARVE was designed to integrate waypoint following to give the vehicle a level 
of semi-autonomy for navigation (Fig. 17). Here, waypoints are markers, 
represented by an orange circle, that are placed in set locations for path planning 
(navigation) prior to the start of a mission. Using waypoint following allows the 
user to conduct additional tasks such as watching a video stream or watching a radar 
screen for potential enemies. Waypoint paths are created on the map screen (Fig. 
17) using the Add Waypoint button [A]. Each click adds an additional waypoint to 
the path. The entire path can be deleted using the Delete button [B]. Once a path is 
complete the Change button [C] is used to adjust waypoints on the screen.  
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Fig. 17 Waypoint following in CARVE 

4.3.3 Autonomous Capabilities 

While the original waypoint-following capabilities mirrored real-world semi-
autonomous navigation through the placement of different waypoints, it was 
important to advance the capabilities of the system to include a customizable 
control system. For this purpose, dynamic capabilities were added to the waypoints 
(Fig. 18). Step-by-step directions for setting dynamic waypoints are included in 
Appendix L.  

 

Fig. 18 Options for dynamic waypoints in CARVE 



 

Approved for public release; distribution is unlimited. 

25 

A feature that was added to the latest release of CARVE was to allow adjustment 
of actions between waypoints. Upon adding a waypoint to the map, the Waypoint 
Action dialog box opens and an action can be selected from the list (Fig. 19 and 
Fig. 20). If “None” is selected, then the same specifications from the previous 
waypoint are kept. This option can be used for “navigation only” markers. If “Stop” 
is selected, then the vehicle will stop at that waypoint for the “duration” set in the 
last text box. Duration time is set in milliseconds. If “Estop” is selected, the vehicle 
will remain stopped until the user releases the vehicle by re-engaging the 
automation through a button press. This capability allows the experimenter to set 
breaks in the simulation. The “SetSpeed” selection is coupled with the “Speed” 
entered. The speed is set in miles per hour (mph). Finally, the “Destination” option 
functions similar to the “None” in that it provides a navigational marker. However, 
it is has a different link to an output file that differentiates between these points. 
Therefore, it can be used to record time stamps for specific events.  

 

Fig. 19 Waypoint Action menu 
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Fig. 20 Dynamic waypoints available actions 

4.4 Alternative Tasks 

Additional tasks that participants can complete can also be added to the CARVE 
interface. These customizable tasks can be used for a dual-task paradigm or to 
increase the participant’s workload. One such example is the radar task (Fig. 21). 
For this task, participants will monitor the radar sensor and identify when a blip 
(small colored dot) changes from yellow (target) to red (threat) by pressing a button 
on the user control interface. Once the threat is identified, the blip will turn from 
red to blue providing feedback to the participant that their task was recorded. 
CARVE is set up to record performance on this task to a .csv file. Performance 
metrics include correct detection, false alarms, misses, and detection time. This task 
is also customizable to create conditions of varying workload (e.g., number of 
possible targets, time between targets, speed of movement, or pattern of 
movement). Instructions are provided in Appendix M.  
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Fig. 21 Alternative radar target detection task in CARVE 

4.5 Manipulating and Measuring HRI 

RIVET and CARVE provide a number of customizable capabilities for 
manipulating and measuring HRI. This section provides a brief review of some of 
those capabilities for data collection as well as references for others. These may 
include recording the behaviors of the simulated robot or virtual Soldier avatar to 
determine frequency and duration of HRI, or data for use in an after-action review 
(AAR). An AAR is a review of the simulation experiment after the fact, where 
participants can provide opinions and feedback on their personal assessment of the 
experiment. Such AAR data can supplement quantitative data collected from the 
simulation and interaction. Depending on what data from the simulation or the 
interface are needed, the code base can be developed to gather and export that 
information to an output file through RIVET or CARVE.  

RIVET has a capability of recording data from the game engine and the scene. This 
is done using code in the engine to allow for Structured Query Language (SQL) 
calls to capture, record, and manage data held in a relational database. For more 
information on how to read, write, and append custom files, see FileIO Tutorial 
(http://docs.garagegames.com/tgb/official/) or the section of the Game 
Programmer’s Guide to Torque on writing and appending files Section 9.5.9 
Writing and Appending Files of the Game Developer’s Guide to Programming 
Torque (Maurina 2006, 370).  

There are also ways of recording data using the CARVE interface. A class was 
created named “WWDataLogger”, which was used to gather data from user 
interaction with the experiment. In this example, all of the data is gathered and 
written to a Microsoft Excel file. It records the location of the target blip, the 
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activity (path started, enemy in zone, enemy identified, enemy misidentified, and 
path completed), and a time stamp. From this, it is possible to calculate signal 
detections, which are delineated as correct response, errors (misses, 
misidentifications), and detection time. Data collection can also be customized to 
record robot behaviors and number of interventions in the robot’s autonomy with 
recording of an event, time, and associated data (e.g., duration and associated times 
of button presses, type of button, as well as time and frequency between manual 
and autonomous modes). This type of data collection requires more advanced 
programming to create the output file (.csv or Microsoft Excel). Depending on what 
data from the simulation or the interface are needed, the code base can be developed 
to gather and export that information into a separate file. 

Customizations to the simulation environment can be made in line with the HRI 
metrics by Steinfeld et al. (2006), Goodrich and Schultz (2007), and Weiss et al. 
(2009), as previously described in Section 2.1 of this report.  

• Navigation of the simulated robot: The effectiveness (e.g., number of 
obstacles avoided or tasks completed) and efficiency (e.g., time and 
duration) related to navigation are elements that can be recorded in RIVET 
(.sql), CARVE (.csv), or by hand during an experiment (e.g., pen and 
paper). Participant feedback through an AAR or video analysis can be 
accomplished by recording the mission run for later viewing through the 
integration of additional video recording software, such as Fraps 
(www.fraps.com).  

• Perception from sensor data: RIVET provides simulated sensor readings 
that come in the same format that a user would receive on the real robot. 
Sensor data can then be run through perception algorithms to identify how 
well the robot understands the world around it. Current configurations of 
the simulated robot can include camera, lidar, and semantic sensors 
(Gonzalez et al. 2009). The details for collecting and assessing sensor 
perception data are outside the scope of this report. However, for more 
information, Dean and DiBerardino (2014) provide resource material on the 
integration of the Common World Model.  

• Management and function allocation: Since this metric area is related to 
user interfaces and control, we recommend using customizable data 
recording through the CARVE application. It is possible to set the 
frequency, duration, type, degree of movement, etc. for every intervention 
using a user control interface to record into a .csv output file. However, this 
may require more advance programming capabilities.  



 

Approved for public release; distribution is unlimited. 

29 

• Manipulation: Here, manipulation is referring to how the simulated robot is 
directly influencing the VE. RIVET offers some degree of manipulation 
required for HRI type tasks; however, fine-grained manipulation required 
by a real-world robot is nearly impossible to accurately model in this 
simulation environment. This is because RIVET is built on a game engine 
instead of in a high-performance computing simulation. However, assessing 
HRI may not require fine-grained manipulation. Therefore, we recommend 
that experimenters refer to the design guidelines and the requirements 
documents of the real-world robot. Programmable animation sequences can 
then be built and integrated into the VE (General Dynamics Robotic 
Systems 2010, 67–232).  

• Social interaction: There are a number of opportunities for manipulating 
and recording social interaction within RIVET and CARVE, as well as with 
obtaining feedback after the fact with an AAR. These measures include, but 
are not limited to, recorded distances between people and robots, 
manipulation of behaviors, communication exchanged (e.g., programmable 
feedback system), programmable team roles, as well as usability, social 
acceptance, and individual differences. These metrics can be recorded 
through the development of customizable GUIs, programmable pauses, 
recordable behaviors, and even integration of outside tools (e.g., eye 
tracking). 

5. Previous HRI Research Using RIVET 

A number of research efforts through the RCTA have used various functionalities 
of RIVET and CARVE for HRI experimentation. One of the main goals of this type 
of experimentation was the advancement of robot design through the consideration 
of the human or the human-robot team. As mentioned earlier in this report, the 
research discussed here is in line with ARL’s Intelligent Systems Enterprise vision 
that enables the teaming of autonomous, intelligent systems with Soldiers. This 
section discusses experiments in both dynamic and unstructured combat 
environments, as well as noncombat military installations and base operations. For 
additional resources on similarities and differences between RIVET and field 
experiments in general, see Bodt et al. (2010) and Schafer et al. (2015). This section 
demonstrates the diversity and customizability of RIVET, which make it a valuable 
platform for HRI experimentation.
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5.1 Cordon and Search  

The cordon and search task has been used as a motivating scenario by ARL 
researchers. During urban transit by a small (4–5 Soldier) unit, a fugitive is reported 
to have entered a building that the unit is approaching. A human-transportable robot 
is instructed to “screen the back door” of the building by the unit commander since 
he cannot safely split up his limited resources (Fig. 22). While this narrative occurs 
in the context of a cordon and search operation, its underlying capabilities support 
a broad range of potential operational missions. 

 
Note: OP = objective point.   

Fig. 22 RCTA motivating scenario (ARL Robotics Collaborative Technology Alliance 2012) 
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5.1.1 Target Detection: Person 

In this experiment, participants monitored a Talon robot complete the cordon and 
search type task to monitor the back of a building for human terrorist targets 
(Schaefer 2013, 2016). A single computer (RIVET only) setup was ideal since 
participants viewed the Talon robot’s camera sensor from a remote location and 
were unable to directly intervene in the robot’s behavior. For the purpose of this 
experiment, a single video of the simulation was created from the camera-view on 
the Talon robot that showed the robot navigating to the back of a building, finding 
a secure location, and monitoring the back door for human targets. The video of the 
simulation was created using Fraps real-time video capture and benchmarking 
program with a 30 frame/second (fps) .avi file. The .avi file was converted into the 
.mp4 file format to add auditory feedback from the Talon robot in post-processing. 
This allowed the experimenter to create multiple conditions from a single 
simulation. Condition 1 provided a 100% reliable detection condition in which the 
Talon robot provided verbal feedback (i.e., “target detected”) for all the human 
targets. Condition 2 provided a 25% reliable detection condition. While auditory 
feedback could have been added within RIVET, it would have required the creation 
of separate mission files. Thus, use of outside software was ideal.  

During development, the VE used was a previously developed base environment 
named CACTF (Combined Arms Collective Training Facility). This VE was 
originally developed to represent a simulated version of a real-world training facility 
of an urban environment that was designed to conduct multi-echelon, full-spectrum 
operations training up to battalion task force level. The base VE included the layout 
of the physical environment (e.g., ground, roadways, buildings, and lighting). To 
meet the needs of this mission, terrorist NPCs were created and added to RIVET 
(Fig. 23). More information on creating NPCs, animations, and adding to the TGE 
can be found in the RIVET Developer’s Guide (General Dynamics Robotic Systems 
2010).  
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Fig. 23 Terrorist NPCs 

Additional capabilities were added to RIVET to meet the needs of this experiment. 
Task-specific customization of the environment was accomplished through creation 
of RIVET GUIs, as well as Scripting syntax using Torsion. Torsion is a powerful 
integrated development environment for creating TorqueScript-based games and 
modifications. Specific customization included entering objects, obstacles, and 
creation of paths, to name a few. For customizable control of the Talon, additional 
script files were included to create and set up a path-following Talon robot (see 
Appendix F and Appendix G for direction on adding a path-following vehicle). This 
allowed a preprogrammed path and the robot behaviors to be set before recording 
the mission. This addition to RIVET has resulted in a number of vehicles (e.g., 
Humvee, taxi, KBot, Talon) with path-following capabilities that are available for 
future simulation experiments. 

5.1.2 Target Detection: Object 

This experiment used a single-user format (one RIVET computer) and was 
designed without adding any new technology or requiring any additional 
TorqueScript files. For this experiment, participants monitored a computer agent 
(either a Soldier avatar or a Talon robot) as they located 16 missing M16 rifles 
throughout a Middle Eastern town (Sanders et al. 2012). Two videos of the 
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simulation (one for a 100% reliable agent and one for a 25% reliable agent) were 
created from the third person perspective for each agent navigating through the 
environment and locating targets.  

The VE used a base environment of the Middle Eastern Marketplace that already 
had static and dynamic objects, and a crowd of people. To meet the needs of this 
mission, a path-following Soldier and a path-following Talon robot, as well as the 
missing rifles were added to the environment (Fig. 24). This allowed additional 
control in navigation path and timing between the agents. The video of the 
simulation was created using Fraps real-time video capture and benchmarking 
program with a 30 fps .avi file. For the purposes of this work, an external 
physiological measurement tool (Labscribe; iWorx, Inc.) and an eye tracker 
(EyeWorks; Eyetracking, Inc.) were used to collect physiological and behavioral 
data. Results are provided in Sanders et al. (2012).  

 

Fig. 24 Example of RIVET map, targets, and avatars (Talon and Soldier) 

5.1.3 Navigation 

For this experiment, participants controlled a Soldier agent situated within a Middle 
Eastern environment (Mid East RCTA Demo). The task was to assist an 
autonomous Talon robot from a set location to a rendezvous point as quickly as 
possible (Schaefer 2013, 2015). This assistance required the participant to locate 
the robot and move obstacles out of the path if the robot was unable to navigate 
around these obstacles. Participants completed this task with 2 different robots. The 
first robot was 80% reliable in self-navigating obstacles (successfully navigated 
around 4 out of the 5 potential obstacles). The second robot was only 20% reliable 
(successfully navigated around one obstacle).  

Due to the design of this experiment, moveable objects were needed and created by 
General Dynamics Robotic Systems (GDRS) for use in RIVET. This included 
syntax for a refrigerator, box, crate, barrel, and trashcan (refer to 
C:\RIVET\sim.base\server\moveableobjects.cs). In addition, independent task-
specific customization of the physical environment was accomplished through 
TorqueScript syntax. Specific customization included entering objects, obstacles, 
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creation of paths, etc. Scripting files were created for both the training session and 
the task conditions. The simulated tasks were recorded using Fraps real-time video 
capture and benchmarking program with a 30-fps .avi file. Video was recorded 
from the Soldier character’s perspective for later data analysis. 

5.1.4 Transparency 

Transparent bi-direction communication is an extremely important component to 
effective and trusted human-robot teaming (Barnes et al. 2016; Schaefer et al. 
2016). To address this HRI issue, Sanders et al. (2014) used RIVET as a single 
computer architecture for a joint Soldier-robot team responsible for clearing an area 
of weapons and locating civilians by marking their location on a map. The authors 
did not require any additional functionality from RIVET for this task. They did, 
however, integrate the RIVET simulation with E-Prime to adapt the type of 
communication from the robot. This included variations in the mode of 
communication from the robot (e.g., audio, text, graphics) and the amount of 
information being communicated (e.g., minimal, contextual, constant).  

5.2 Gunnery 

A second type of combat-related mission was created in RIVET to conduct virtual 
unmanned gunnery exercises. The purpose was to assess the effect of various 
interface devices for robotic asset control on system operation and overall 
performance. A series of gunnery exercises was created to assess the ability of the 
operator to identify targets, select the appropriate weapon, and engage targets with 
the handheld gamepad and Microsoft Kinect voice commands. This experimental 
setup required use of the client/server architecture with the RIVET server, BOLT 
client, and CARVE application. The VE in RIVET adapted the base Engineering 
Test World mission to meet the needs of this type of task, including the terrain, 
foliage, roadways, and targets (Fig. 25). 
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Fig. 25 Gunnery range map 

These exercises required additional components to be set up within RIVET, 
including a number of targets, type of targets, the posture of the vehicle (offensive 
or defensive), and the position on the range where it will take place. These data are 
entered into the system using a custom GUI (Fig. 26). When using this GUI, the 
data entered are added to the database using SQL calls in the script. Once the 
database is updated with the exercises, the experiment can be conducted. The 
exercise begins and the timings of all events that happen during that engagement 
are recorded in the database for use during an AAR. 



 

Approved for public release; distribution is unlimited. 

36 

 
Note:  The GUI creation editor gives the programmer all the tools necessary to create these and other interfaces. 
New controls are found in the upper left drop-down box (outlined in red), and once they are added to the canvas, 
they show up in the GUI tree view (outlined in green) with their properties accessible in the inspector dialog 
(outlined in blue). 

Fig. 26 GUI editor: example of gunnery user interface GUI setup 

5.3 Driverless Vehicle Transport 

A third, and most recent, type of mission used for HRI experimentation investigated 
a specific non-combat operation of driverless vehicles for passenger transit. One 
example is an experiment motivated by the Autonomous Robotics for Installations 
and Base Operations (ARIBO) project (Marshall 2014). The purpose of this 
experiment was to build a virtual US Army post in RIVET in order to assess 
behavior and performance of a person on board a self-driving vehicle prior to the 
actual vehicle being developed (Schaefer and Scribner 2015). This design required 
use of the client/server architecture with the RIVET server, BOLT client, and 
CARVE application. 

The first major need was to build the VE within RIVET (refer to Appendixes A–I). 
For this design, the ARL Test World was used as the base virtual terrain. The height 
of the terrain varies as seen from the mountain ranges in the background to the 
mostly level terrain in the cantonments area. However, this open expanse amidst a 
mountain range was sufficient for this mission environment. The ground has 
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multiple textures including grass, dirt, and hard-packed black gravel. These were 
added to the scene with the Terrain Texture editor that allows the creator to add 
color and dimension to the scene. Then, the medical facilities from a US military 
installation were used as a frame of reference for developing a road and sidewalk 
structure, building location, parking lots, and other stationary obstacles (Fig. 27). 
Many of the static objects included in this new mission were already available 
within the RIVET libraries. While this means that the VE is not an exact replica of 
the real environment, it does meet the requirements for the experiment and provides 
the capability to include some of the key requirements (e.g., vehicle behaviors, 
transportation times, number of turns) to be able to transition this experimental 
design to the real world once the prototype robotic vehicle is available for further 
experimentation. 

 

Fig. 27 Virtual environment representing the medical facilities on a US Army post 

In the next step after building the VE, the CARVE application was adapted in 
multiple ways. First, dynamic waypoints were included (refer to Section 4.2.3) to 
more accurately mirror real-world autonomous behaviors. Second, a new 
controller, the Logitech G27 wheel and pedals, as well as the engage/disengage 
buttons, were integrated into CARVE for realistic manual control. Third, an output 
file (.csv) was created that recorded all interventions in the vehicle’s autonomy. 
Finally, a number of GUIs were developed within RIVET to provide instructions 
and information to the participant (e.g., notice of other passengers onboard the 
vehicle, location information, and wrong-way directions).  

The final step was to choose a robotic vehicle that was approximately the same size 
and shape of the real-world prototype vehicle. Even though there are many different 
robotic vehicles to choose from within the simulation, it is important to match the 
system to the exercise. A larger vehicle was needed for this experiment, as it has to 
be able to pick up and discharge passengers. Since details were not available about 
the final physical design of the real-world prototype vehicle, the tactical 
autonomous combat chassis (TAC-C) was used, which was previously designed by 
GDRS as a simulated manned/unmanned platform with the potential for manual or 
autonomous control (Fig. 28). In addition, the camera position was moved to be 
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located at the “driver” position of the vehicle, so very little of the vehicle was 
actually seen by the participant. Additional information on this set of experiments 
is currently available in Schaefer and Scribner (2015) and will be available in 
additional ARL technical reports.  

 
Note: The TAC-C was used because of its size (height and width), as well as the functionality of 
the animation sequences. Originally, the vehicle had a turret and other associated weaponry (left). 
Once the graphics of the turret and other weaponry were removed, the functionality to scan right 
to left as well as up and down was still there (right). We used this functionality to represent 
someone turning their head to look around for oncoming traffic or environmental obstacles.  

Fig. 28 Customizations to the TAC-C 

6. Discussion 

This report provides an introduction to developing and advancing RIVET 
simulation and the associated CARVE application to meet the needs for HRI 
experimentation. Overall, the capability for customization from the user control 
interface to the sensor and autonomy integration and on to the integration of a user 
feedback interface make the RIVET simulation system a valuable resource to 
understanding the needs of a variety of current and future HRI (Section 5). Further, 
step-by-step instructions are provided for future researchers to set up and use 
RIVET (Appendixes A–M). This section provides some remaining lessons learned 
while updating the RIVET system, as well as additional resource guides.  

6.1 Lessons Learned 

This section addresses some of the solutions to problem areas found while 
developing and advancing RIVET and the associated CARVE application.
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6.1.1 Problem No. 1: CARVE Does Not Always Load Correctly 

If CARVE does not load, gives an error, or shuts down, then first check the 
connectivity to make sure the CARVE computer is receiving signals from both the 
RIVET server and the BOLT client computers (Appendix B, Figs. B-1 and B-2). It 
is good practice to look at the connectivity prior to loading CARVE to check that 
CARVE is set up to connect to the RIVET and BOLT IP addresses through the 
Ethernet LAN. 

The second check is the RIVET server machine. When using the 3-computer setup 
(RIVET, BOLT, CARVE), it is vital to choose a vehicle that has a BOLT sensor 
attachment. Otherwise, the BOLT sensor on the client machine and the CARVE 
application will not connect. If the correct vehicle was chosen, then check the 
BOLT client machine. Double-check to see that the name is set to User 1, the name 
of the vehicle. This name is what allows the BOLT sensor to attach to the vehicle.  

If there are still issues connecting to the CARVE application, the final thing to 
check is the map. CARVE requires the map of the VE from RIVET to function 
appropriately. The optimal sizing for the map is 1600 × 1600 pixels and less than 2 
MB in size. External programs can be used to reduce the size of the .png file (e.g., 
Adobe Fireworks). Directions for creating a map are provided in Appendix B.  

6.1.2 Problem No. 2: CARVE Takes Too Long to Load 

CARVE can take upwards of a minute to initially load the application, because it is 
pulling the mission map from RIVET every time it is initialized. When conducting 
multiple trials, this time delay can add up to a great deal of wait time. However, to 
address this issue, we built in a shortcut that will store the map locally following 
the first initialization of CARVE. Directions are included in Appendix K.  

6.1.3 Problem No. 3: Picture Quality Is Granulated or Pixelated  

If the picture becomes granulated or pixelated, this may be a sign of a graphics card 
issue. Building complex VEs, especially those with a number of moving objects, 
can slow down the system. One solution is to reduce the number of static and 
dynamic objects in the VE. However, that may not always be possible. A second 
solution is to use trigger points to create and delete NPC and path-following 
vehicles at set points in time and space during the mission run (Appendixes E–H). 
Finally, check the hardware—more specifically, the graphics card. Nvidia GeForce 
graphics cards were found to be better suited to work with complex VEs within 
RIVET than the Nvidia Quadro cards. In addition, it may be beneficial to have a 
graphics card with a separate memory storage (e.g., Nvidia GeForce GTX 780). 
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If this issue only occurs on the CARVE display, then it may be a packaging issue. 
CARVE pulls the camera video from the BOLT machine by decompressing the 
video stream and then enlarging it on the CARVE screen. This process of shrinking 
and then enlarging the video stream can lead to pixelation. One possible solution is 
to reduce the screen size on the BOLT machine by clicking on the Configuration 
button prior to mounting the BOLT sensor (Fig. 29).  

 

Fig. 29 Location to change the screen size 

6.1.4 Problem No. 4: Camera Sensor Is Located in the Wrong Place 

It is possible that the standard camera sensor location is not in ideally placed to 
meet the needs of the experiment. For example, if the camera is placed too high or 
too low, a Soldier avatar may appear to be taller or shorter than an average person 
appears. Similarly, the height of the camera sensor on a vehicle may give the 
perspective of driving on roof if placed too high, or display the animations of the 
wheel wells if placed too low. In addition, the forward or rear placement of the 
camera sensor can change the perspective of the experiment. For example, with a 
Soldier avatar, it is possible to change the camera placement to be in front of the 
Soldier, at eye level of the Soldier, or behind the Soldier. 
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The solution for changing the placement of the camera is simple, but it requires an 
understanding of the TorqueScript files. Every player vehicle has an associated 
TorqueScript file (.cs) that can be located in the following directory: 
C:\RIVET\sim.base\server. To edit the specific vehicle file (.cs), it will need to be 
opened as a text file in Notepad, Notepad++, or Torsion.  

The following are step-by-step directions on how to adapt the camera sensor 
placement for the TAC-C.  

1. Open the tacc_weapons.cs file (C:\RIVET\sim.base\server). 

2. Scroll down or search (Ctrl+f) for //3rd person camera settings (around line 
98). 

3. To change the camera’s distance either forward or backward from the 
middle of the vehicle, change the cameraMinDist number. The max 
numbers are +8.0 and –8.0.  

4. To change the vertical distance higher or lower, change the cameraOffset 
with a positive or negative number (Fig. 30). 

 
Note: Changing the location of the camera sensor in this file will change the placement of the camera sensor 
for this vehicle when used in any mission in the future. Therefore, it may be beneficial to add a comment (green 
text denoted with 2 forward slashed lines) marking changes made to the TorqueScript file. 

Fig. 30 TorqueScript file in Torsion for adapting the camera sensor placement for the 
TAC-C vehicle 

6.1.5 Problem No. 5: Need to Customize Pre-loaded Animation 
Sequences 

The current version of RIVET is designed to initialize some set animation 
sequences upon inclusion in a mission environment. For example, in the experiment 
on target detection (Section 5.1.2), upon placing the M16 rifles within the VE, they 
began to spin, as is common in game design. This animation sequence may or may 
not be ideal for a specific experiment; however, this animation sequence has also 
been programmed to be customizable. In other words, it is possible to stop the rifles 
from spinning in circles. Although this specific example refers to rifles that spin, 
other animation sequences might be customized in a similar manner. Some brief 
directions to customize are as follows: 



 

Approved for public release; distribution is unlimited. 

42 

1. In RIVET, press F11 to open the World Editor. 

2. Press F4 (or use the Window menu) to open the World Editor Creator. 
Select and add the M16 rifle from the menu on the right side of the screen.  

3. To add the M16 rifle, select “shapes”, “weapons”, and “M16”. A spinning 
rifle should be visible in the VE. 

4. Click on the M16. Once it has a yellow box, then press F3 (or use the 
Windows menu) to open the World Editor Inspector to customize the M16 
rifle. 

5. To stop the rifle from spinning, deselect the Rotate button and click apply 
(Fig. 31).  

6. The rifle will continue spinning. Go to File, click Save, and then logout of 
RIVET completely. After logging back in to the Mission file, the rifle 
should no longer be spinning.  

7. Another way to ensure that it accepted the changes is by looking at the 
TorqueScript file. To do this, open the Mission File (.mis) by going to the 
directory C:\RIVET\sim.base\data\usermissions\ and select the correct 
Mission file. At the bottom of the file, the new item should appear. In the 
example shown in Fig. 32, the dataBlock is an M16 and the rotate is set to 
“0” or false (marked with a red arrow).   

 

Fig. 31 Example of adapting animations: spinning M16 
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Fig. 32 Example code for customizing rotation animations on the M16 rifle 

6.1.6 Problem No. 6: Removing Add-ons from Pre-loaded Graphics and 
Animations 

The current design of RIVET includes a number of accessible graphics and 
animations. However, in their original state it may not be possible to directly 
integrate those graphics into a new mission. For example, in the experimental 
design using the TAC-C vehicle in place of a future self-driving vehicle for Soldier 
transport in a noncombat environment (Section 5.3), even after relocating the 
camera sensor, it was still possible to see the weapons systems. Since the design of 
this vehicle was built in multiple pieces, it was possible to simply remove the 
graphics (i.e., the weapons systems) while maintaining the functionality of a turret, 
from which the camera can move through the BOLT interface. Some quick 
instructions for removing the weapons systems graphics from the TAC-C vehicle 
are as follows: 

1. Open the directory: C:\RIVET\sim.base.data\vehicles\tacc_weapons. 

2. Select the following 4 .dts media files: tu_machinegun_act; 
tu_maingun_act; tu_rsta_act; and v_tac-c_weapons (Fig. 33). 

3. Do not delete these files. Create a new folder in this directory called temp, 
and place the files in this folder (Fig. 34) to allow the files to be returned to 
the directory at a later time.  
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Fig. 33 Directory location of files to remove weapons systems from the TAC-C 

 

 

Fig. 34 Creation of a temporary folder 
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6.2 Support and Documentation 

6.2.1 RIVET Developer’s Guide 

Perhaps one of the most useful and relevant sources to understanding the makeup 
and architecture of RIVET is the RIVET Developer’s Guide (General Dynamics 
Robotic Systems 2010). This document is included in the software and provides an 
introduction to the TGE (Chapter 1), system requirements (Chapter 2), a high-level 
overview of RIVET (Chapter 3), instructions for creating objects (Chapters 4–7), 
instructions for world building and introduction to the editors (Chapter 8), 
introduction to TorqueScript (Chapter 9), entity AI (Chapter 10), dataset creation 
(Chapter 11), and HITL support (Chapter 12–13). However, this resource is a 
proprietary document that may also be difficult to understand without additional 
background in the TGE, game development, or computer programming.  

6.2.2 GarageGames.com Online Forums and Documentation 

Torque Developer Network (tdn.garagegames.com) is the official reference site for 
coders, artists, or anyone working with Torque. This site requires a login and is 
currently in its beta version. It has a number of tutorials and documentation for a 
wide range of topics. Since all materials have been written collaboratively by 
Torque developers, it can sometimes be difficult to understand by a novice Torque 
user as it has varying levels of descriptions and explanations. Also, some of the 
step-by-step directions reference editors that are not available in the RIVET v.1.0. 
However, the documentation often provides examples of TorqueScript files that can 
be leveraged to meet a user’s needs and is constantly updated with new information. 
In addition, a number of resources are also freely available 
(http://docs.garagegames.com/tge/official/).  

6.2.3 The Game Programmer’s Guide to Torque 

The Game Programmer’s Guide to Torque (Maurina 2006) is a GarageGames book 
that provides a cogent, base-level introduction to Torque from start (opening the 
TGE for the first time) to finish (putting it all together). The core substance of the 
book focuses on the game elements including classes, objects, and even an 
introductory glance into scripting and game interfaces. While this book provides a 
number of step-by-step examples, the design and setup of RIVET extends beyond 
the standard layout of the TGE. In addition, it may not go into the level of detail 
needed for creating HRI missions but overall is a valuable resource. 
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6.2.4 Scripting 

While this report does not provide a lot of detail about TorqueScript, understanding 
the “what” and the “how” can add customization capabilities to the VE. To begin, 
TorqueScript is a programming language very similar to C++. Having an 
introductory understanding of programming languages can help immensely, 
especially when reading different resources. This report provides an overview of 
some additional resources to scripting. A general introduction to TorqueScript can 
be found by reviewing the GarageGames online documentation. This information 
is available online at http://docs.garagegames.com/tgea/official/content
/documentation/Scripting%20Reference/Introduction/TorqueScript.html. For a 
more in-depth review, the book Advanced 3D Game Programming All in One 
(Finney 2005) comes with a CD and provides good explanations of datablocks, 
vectors, and matrices, along with an entire chapter on TorqueScript. In addition, the 
book 3D Game Programming All in One (Finney 2007) provides an introduction to 
the entire process of creating a game within Torque, including building the models, 
creating animations, server-client architectures, creation of GUIs, and even testing.  

6.2.5 Animations 

Chapter 7 of the RIVET Developers Guide (General Dynamics Robotic Systems 
2010) provides the most in-depth instruction as to creating animated models. There 
are multiple choices for modeling and rendering applications such as Blender, 
Maya, and 3ds Max. The instructions in the Guide are based on 3ds Max by 
Autodesk. 

6.2.6 Other Torque Resources 

Finally, other online resources may be helpful in providing guidance and instruction 
while developing specific missions, including tutorials by Dr David J Sushil: A 
Torque Game Engine Primer (2008), Simple AI in the Torque Game Engine (2008), 
Creating Doors in Torque (2007), Animating Characters in Torque (2007), Sound 
Effects in Torque (2007), and Controlling Events with Triggers in Torque (2007). 
These resources, as well as a number of examples were written as instructional 
guides for game development students. These step-by-step guides often provide 
more detail than programming books or online forums. In addition, they are freely 
downloadable .pdf files that can be found online at http://www.davidjsushil.com 
/index.php?action=tutorials. 
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7. Conclusions 

Using a game engine (such as RIVET) to create a robotic platform application, 
while including a separate interface for human interaction, provides a division 
between the software applications. This separation allows software engineers to 
make changes to the algorithms in perception, intelligence, and mobility while 
leaving the HRI untouched. Therefore, development of each part may continue 
while still allowing for testing at each step. The game engine allows for 
reproducibility during testing to capture the user interactions with the robot. There 
is no longer a need to wait for the final product to roll off the assembly line and into 
the hands of Soldiers before conducting experimentation to explore human 
interaction questions. Instead, integrating HRI experimentation early on can help 
drive design choices during the stages of development. 
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Appendix A. RIVET Menus 
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Server Computer: Main User. The first button on the main menu is Load Mission 
(Fig. A-1).  

 

Fig. A-1 RIVET main menu GUI for main user 

It leads the user to the next GUI where the user can choose the mission, vehicle, 
and whether it is friendly or enemy (Fig. A-2). The image on the right is the 
overhead map of the mission area. 

 

Fig. A-2 RIVET load menu GUI for main user 
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Client Computer: Add Additional Players. Up to 64 players can join a mission 
(Fig. A-3). A player can be a person (e.g., Soldier), vehicle (e.g., Humvee), robot 
(e.g., Talon), or a sensor attached to the main character (from the Server computer).  

 

Fig. A-3 RIVET main menu GUI for client computer 

After selecting Join Mission, a new window (Fig. A-4) will open that will allow 
selection of a player character or vehicle [1] and side (i.e., red, blue, neutral) [2]. 
To connect to the correct Mission, click Find Servers [3] and select the Server 
Name. To join the mission, select Join Mission [4]. 

 

Fig. A-4 RIVET join mission GUI for client computer 
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Appendix B. CARVE Menus 
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CARVE Main Menu. The Control of Autonomous Robotic Vehicle Experiments 
(CARVE) Main Menu (Fig. B-1) leads the user to a series of submenus located in 
the lower-right-hand corner of the screen. These include the Connection button 
(bottom right), settings submenu (bottom left), user interfaces (top left), and vehicle 
operations submenu (top right). These 4 icons are always available to the user and 
are accessed by a mouse interface. 

 

Fig. B-1 CARVE Main Menu GUI 
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Settings submenu. The settings submenu has a few options for customization of 
the connectivity, video, networking, controller choice, and exiting the simulation 
(Fig. B-2).  

 

Fig. B-2 Settings submenu 

This submenu allows the experimenter to check the setup of the experimental space. 
This includes being able to set up the connectivity of the sensor and vehicle by 
entering internet protocol (IP) addresses and ports. Connectivity is needed to 
connect CARVE to RIVET. The video and networking buttons were designed for 
later versions of CARVE so that the video and bandwidth can be degraded to 
represent poor communication situations. The controller button allows the 
experimenter to set the device that will be used in the mission (e.g., joystick, 
steering wheel). Finally, to exit the program is self-explanatory. 
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User Interfaces submenu. The User Interfaces submenu (Fig. B-3) provides the 
experimenter the capability to set up a number of additional functionalities for the 
participant.  

 

Fig. B-3 User interfaces submenu 

The Video button allows the experimenter to set the main screen to show the video 
stream. The Map button sets the main screen to show the overhead map of the area. 
The picture-in-picture (PIP) option displays either the map or video opposite to 
what is displayed on the main screen in a smaller screen in the upper-right-hand 
corner of the video feed. This gives the user additional situation awareness during 
experiments. The Controls button provides an on-screen option for controlling the 
robot or vehicle. While the Gesture and Speech buttons are used to integrate an 
Xbox Kinect sensor into an experiment if naturalistic communication is required.  
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Vehicle Operations submenu. The Vehicle Operations submenu (Fig. B-4) allows 
the user to change the posture in which the vehicle is used.  

 

Fig. B-4 Vehicle Operations submenu 

Tele-op (which stands for teleoperation) allows the user to drive the vehicle with 
the chosen controller. These include the game pad, joystick, or racing wheel, to 
name a few. If the vehicle is set up with a weapon system, the Main Gun or Machine 
Gun settings allow the movement of the turret with the same controller. The 
Waypoint Follow button has a submenu that gives the user the control to initiate 
waypoint following. The navigation is set using the map screen to create a waypoint 
path for the vehicle to follow.  
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Appendix C. Creating a New Mission: Load RIVET 
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1. Open RIVET. The Load Mission button leads the user to the next graphical 
user interface (GUI) shown in Fig. C-1 (see also the RIVET Developer’s Guide,1 
p. 41–43). It allows the user to choose the mission, the player character 
(vehicle/Soldier), and whether it is friendly or enemy.  

 

Fig. C-1 RIVET load mission menu 

  

                                                 
1 General Dynamics Robotic Systems. RIVET developer’s guide (included in software installer package 

in Docs folder). Westminster (MD): General Dynamics Robotics Systems; 2010. p. 41–43. 
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2. Pick a player character. When first building a new virtual environment (VE) 
for HRI research, it is recommended to select either a Soldier or Humvee (Fig. 
C-2). These two player characters are designed to function well with the 
keyboard and mouse user interface. However, when using RIVET with the 
BOLT sensor and CARVE application, choose only a vehicle with BOLT listed 
in the title. BOLT deactivates the keyboard and mouse associated with the 
Server computer.  

 

 

Fig. C-2 Selecting a player character: Humvee  
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3. Choose your mission. When creating a new VE, it may be beneficial to begin 
by opening a Mission file that has already been created, as shown in Fig. C-3 
(e.g., ARL Test World). The associated TorqueScript mission file (ARL Test 
World.mis) is located in the following directory: C:\RIVET\sim.base
\data\missions. 

 

Fig. C-3 Selecting a mission 

To successfully open and run a mission, this directory 
(C:\RIVET\sim.base\data\missions) should have the following files: Mission 
file (.mis) and Terrain file (.ter). To run BOLT and CARVE, the directory 
should also contain a Map (.png) and a location file (.cs).  
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4. Launch Mission. Commands for controlling the player character and switching 
camera views (first person, third person, or birds-eye view [Fig. C-4]) are 
available in the RIVET Developer’s Guide1  (p. 48–49).  

 

Fig. C-4 Changing camera views: example of a birds-eye view 

5. Save As a new Mission File. Press F11 on the keyboard; click on File, and 
select Save Mission As (Fig. C-5). 

 

Fig. C-5 How to save a new mission file 
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6. Rename File. This will save the mission in a new directory 
[C:\RIVET\sim.base\data\user_missions]. Make sure to rename the file (e.g., 
HRI Experiment 1.mis); otherwise it will overwrite a previous file (Fig. C-6).  

 

Fig. C-6 Rename file 

This process will create the Mission file (.mis) and a Terrain file (.ter). To check 
that the files were created, open the directory (C:\RIVET\sim.base
\data\usermissions) as shown in (Fig. C-7). 

 

Fig. C-7 Save mission as new file name 

7. Save Mission. Once you have created a new Mission file with a new name, it 
is important to save often. The mission can be saved by selecting file menu 
option (Press F11, select File, and select Save Mission). It is also possible to 
save the mission by using the keyboard command [Ctrl+s].  
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8. Delete Current Objects (e.g., building and path). To delete an object use the 
mouse, hold left mouse button down and drag the mouse to select the area 
desired. A yellow box will appear around the objects selected. To mark that the 
object has been selected, it will be outlined in red (Fig. C-8). To delete these 
objects, press the Delete key on the keyboard. Note there are no “undo” options. 

 

Fig. C-8 Selecting objects in the VE 

9. Closing RIVET. There are different ways to close RIVET. The first is through 
the File menu (F11, File, Quit). The second is by using the keyboard command, 
Alt+F4. Remember to save before closing RIVET.  
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10. Open Saved Mission. To open the newly created User Mission file, open 
RIVET and click on Launch Mission (see step 1). Click on the User Mission 
tab and select the mission. As shown in Fig. C-9, the mission name will be the 
original file name (e.g., ARL Test World) even though the file was saved with 
a new name [HRI Experiment 1.mis]. This is still the newly created mission; 
however, there is an additional step to change the name of the file in the Main 
Menu GUI. 

 

 

Fig. C-9 Open saved user mission 
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11. Change User Mission File Name. To update the file name in Main Menu GUI, 
close the RIVET Main Menu (press Cancel and Exit to close RIVET. The next 
step involves editing the TorqueScript. Open the Mission file (.mis) from the 
directory. Directions to access the .mis file in the Data Directory can be found 
in step 6. . Open the mission file by using Notepad, Notepad++, or Torsion. At 
the top of the .mis file is the TorqueScript for the “name” and “desc0” (see Fig. 
C-10 – Original Script). Both should be updated so that name matches the new 
User Mission name and desc0 marks the person(s) responsible for creating the 
new VE. These are marked in red text (see Fig. C-10 – Revised Script).   

Original script  Revised script 

new ScriptObject(MissionInfo) {  new ScriptObject(MissionInfo) { 
     name = “ARL Test World”;           name = “RIVET TR Example: HRI Experiment 1”; 
     desc0 = “General Dynamics Robotic Systems”;           desc0 = “Designed by Dr. K.E. Schaefer, ARL”; 
     aiPlayerFile = “testAIplayer.cs”;           aiPlayerFile = “testAIplayer.cs”; 
     descLines = “1”;           descLines = “1”; 
     map = “ARL_world”;           map = “ARL_world”; 

};  }; 

Fig. C-10 Example TorqueScript to update the user mission name for the main menu GUI 

12. Now when RIVET is opened and Launch Mission selected, the User Missions 
tab will list the updated name of the correct user mission (Fig. C-11). While this 
will not inhibit use of the system, updating the User Mission file name in the 
Main Menu GUI is encouraged, as it helps to accurately and effectively 
differentiate between multiple User Mission files.  

 

Fig. C-11 Main menu GUI: updated user mission file name 
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13. Map. Another way to help differentiate between the user missions is by adding 
a map to the User Mission login screen. Map creation is also essential when 
using the CARVE application. To create a Map, first load RIVET and launch 
the User Mission. Next, press Alt+c on the keyboard to switch camera view. 
Use W, A, S, D keyboard commands at the same time as moving the mouse to 
move upward into the air.  

14. Creating the Map. To initiate the process for creating a map, first follow the 
steps to name the map the same name as the User Mission. Press the tilde (~) 
key on the keyboard to open the Console and type $userPref::MissionMaps = 
“HRI Experiment 1, 4, 4, 0.4”; as shown in Fig. C-12. Next, press Enter on the 
keyboard and ~ to close the Console. To create the Map, press Alt+m on the 
keyboard. The Map (.png) and associated location file (.cs) are automatically 
place into the RIVET directory C:\RIVET (Fig. C-13).  

 

Fig. C-12  Create map screen 

 

Fig. C-13 RIVET directory location for map (.png) and location (.cs) files 



 

Approved for public release; distribution is unlimited. 

75 

15. Setting up a Map in RIVET. For RIVET to be able to successfully read the 
Map, first, move the map and location files (.png and .cs) to the User Mission 
directory as shown in Fig. C-14 (C:\RIVET\sim.base\data\usermissions).  

 

Fig. C-14 User mission directory 

Next, open up the Mission file (C:\RIVET\sim.base\data\usermissions\HRI 
Experiment 1.mis) and add or revise the TorqueScript (see Fig. C-15, line 6). 
This will now call the Map. When RIVET is opened, select the User Mission, 
and a Map will now be present (Fig. C-16).  

 

Fig. C-15 TorqueScript: adding the map 

 

Fig. C-16 Main Menu GUI: user mission file with map 
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16. Map Size. To check the map size, right click on the map to look at the properties 
of the file. Ideally, the map should be 1600 × 1600 pixels and under 2 MB in 
size. If this is not the case, use an outside program (e.g., Adobe Fireworks) to 
reduce the size of the map (.png). If this step is missed, RIVET will provide an 
error message as shown in Fig. C-17. 

 

Fig. C-17 Error message  
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Appendix D. Creating a New Mission: Editing the Terrain 
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1. Terrain Editor Tool. Use the Terrain Editor tool to adapt the height and shape 
of the terrain (Fig. D-1). It can be accessed by pressing F11 on the keyboard 
and selecting Window and Terrain Editor from the drop-down menu.   

 

Fig. D-1 Terrain Editor tool 

2. Action Menu. Select the action (e.g., add dirt, adjust height) to be revised (Fig. 
D-2). 

 

Fig. D-2 Terrain Editor: Action submenu 
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3. Brush size. Choose the size of the brush (Fig. D-3). 

 

Fig. D-3 Terrain Editor: Brush submenu 

4. To edit the shape of the terrain, use the mouse. Click and hold the left mouse 
button while dragging left, right, up, or down (Fig. D-4). This will raise or lower 
the ground terrain.  

 

Fig. D-4 Edit the shape of the terrain 

 
 



 

Approved for public release; distribution is unlimited. 

80 

5. Terrain Painter tool. This tool bar is used to change the underlying texture of 
the terrain. Click on one of the terrains and then paint the environment (Fig. D-5). 

 

Fig. D-5 Terrain Painter tool 

It is possible to add additional textures by clicking on Add (Fig. D-6, right side 
menu) and searching through the menu options for different image files (.jpg) 
(Fig. D-7). These image files can also be found in the terrains directory, 
C:\RIVET\sim.base\data\terrains\terrains\snow2.jpg. This allows for greater 
flexibility in the design of the terrain that can be updated at any time during 
creation of the virtual environment.  

 

Fig. D-6 Texture submenu 
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Fig. D-7 Available terrain textures 

6. Save often! 
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INTENTIONALLY LEFT BLANK. 
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Appendix E. Add Static Objects 
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1. Change Camera View. Currently, the virtual environment is very empty (Fig. 
E-1). Before adding objects, it is important to change the camera’s viewing 
angle.  

 

Fig. E-1   Original view 

To toggle your camera to Fly mode (also known as birds-eye mode), press Alt+c 
on the keyboard. This same action can also be achieved through the menu 
options (F11) by selecting the Camera menu and the Toggle Camera option. 
After the camera is placed in Fly mode, pull the mouse toward you and hold 
down the “s” key. It will appear that you are “flying” higher into the air while 
looking down at the ground. It should be possible to see the Humvee on the 
ground below (Fig. E-2). This is the best view to have when adding static 
objects; otherwise, they could end up being placed underground.  

 

Fig. E-2 Fly mode 
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2. Add objects. Use the World Editor Creator to add objects to the VE (Fig. E-3). 
To open the World Editor Creator, press F11, select Window and World Editor 
Creator. It may also be possible to open this menu by pressing F4 on the 
keyboard. 

 

Fig. E-3 World Editor Creator tool to add objects 

3. Static Objects. RIVET already has a number of static objects available for use. 
Most of these are available under the Interiors or Static Shapes directory 
(Fig. E-4).  

 

Fig. E-4 RIVET static object directory 
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4. Finding Static Objects. It may be difficult to know what static objects are 
currently available. RIVET has a Mission File [3D Object Catalog - DO NOT 
MODIFY!!!] that provides a single location that includes a number of (but not 
all) of the static objects available (e.g., buildings, roadways, warehouse objects, 
and street signs). Fig. E-5 depicts the Main Menu GUI options for opening the 
3D Object Catalog file. Figures E-6 through E-8 provide examples of some the 
static objects available.  

 

Fig. E-5 3D Object Catalog VE located in the Main Menu GUI 

 

 

Fig. E-6 Options for static buildings  
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Fig. E-7 Options for static warehouses  

 

 

Fig. E-8 Options for static signs and other obstacles 
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5. Locating an object’s file location. To find the location of an object in the tree 
structure for later use in the VE, press F11, click on desired object, and open 
the World Editor Inspector (Fig. E-9). The World Editor Inspector can be 
opened by either pressing the F3 key on the keyboard, or pressing F11, selecting 
Windows and World Editor Inspector from the drop-down menu.  

 

Fig. E-9 World Editor Inspector menu 
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6. World Editor Inspector. Click on open file dialog box (mouse cursor, outlined 
with a red box) and then search for the name of the object (e.g., 
redBrick40sGarage) in the list (Fig. E-10). Make a note that this building is 
located in the Interiors\DowntownDistrict directory. 

 

Fig. E-10 Locating an object file in the World Editor Inspector 

7. Open the selected mission [RIVET TR Example: HRI Experiment 1], and 
repeat step 1 for adding static objects. The screen should appear as shown in 
Fig. E-11. 

 

Fig. E-11 User VE from fly mode 
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Add a Static Object. Open the World Editor (F11) and then open the World 
Editor Creator (see steps 2 and 3). Open the Interiors menu (Fig. E-12). 

 

Fig. E-12 Adding a static object through the Interiors menu 

8. Finding the Garage. Scroll down to find DowntownDistrict and click on 
redBrick40sGarage. Once the garage is selected, it will appear in the VE. 
However, as shown in Fig. E-13, the building is located on top of the Humvee 
and partially underground.  

 

Fig. E-13 Initial building placement 
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9. Moving an object. To move an object, click (on the X, Y, or Z-axis) and drag 
the building to a desired location (Fig. E-14). 

 

Fig. E-14 Moving an object within the VE 

10. Rotating an object. To rotate an object, press Alt on the keyboard and select 
the Z-axis with the mouse (left mouse button). While holding both buttons, 
move the mouse. The object will rotate. The position, rotation, and size of the 
object can also be changed using the World Editor Inspector (F3) menu 
(Fig. E-15). 

 

Fig. E-15 Rotating an object 
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11. Keep adding objects to the VE until it resembles the experimental environment. 
These objects are automatically added to the Mission file (.mis). An example of 
the TorqueScript that is added into the .mis file for a static object 
(redBrick40sGarage.dif) is provided below.  

12. Save often! 

 
new InteriorInstance() { 

position = "-58.2412 -9.79301 -1.4"; 
rotation = "0 0 1 231.085"; 
scale = "1 1 1"; 
interiorFile = "~/data/interiors/DowntownDistrict/redBrick40sGarage.dif"; 
useGLLighting = "0"; 
showTerrainInside = "0"; 

}; 
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Appendix F. Creating a Path 
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1. Adding a path. To add a path that another vehicle or person may follow, open 
the World Editor Creator (F4). Click on Path to name the path. Assign a unique 
name to help differentiate between the paths. In Fig. F-1, the path name is 
ExamplePath.  

 

Fig. F-1 Naming a new path 
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2. Adding a PathMarker. A PathMarker is used to label the points on the path 
(Fig. F-2). This is the process to add all the path markers needed to complete 
the desired path. Make sure every PathMarker has a unique name. Label names 
should not have any spaces (use underscore if needed). Each PathMarker can 
be moved in the VE in the same way static objects were moved. The Y-axis 
should face the direction in which the vehicle is to move for each PathMarker. 

 

Fig. F-2 Adding a PathMarker to the new path 
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3. Linking the PathMarkers. Now that all the PathMarkers are placed and 
rotated, select all the PathMarkers from the tree in the upper-right corner 
(Folder name +MissionGroup – SimGroup) (Fig. F-3). They should be located 
at the bottom of the tree structure since they were the most recent thing added 
to the VE. To select multiple PathMarkers at the same time, hold down the Ctrl 
key on the keyboard and click on each marker individually. 

 

Fig. F-3 Selecting all PathMarkers on a path
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4. Move the PathMarkers under the path name (next to the infinity sign, see 
Fig. F-4). In the VE, all markers will be connected by a dotted green line.  

 

Fig. F-4 Linking the path 
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5. To ensure the vehicle will be traveling in the correct direction, check and fix 
the sequence order (seqNum) for each of the markers (Fig. F-5, red box). Click 
on the sequence number in the Window Editor Inspector (F3) menu, type in the 
correct number, and click Apply (e.g., the marker named ExamplePath1 should 
have a Sequence number of 1). During this process, it is normal for the green 
dotted line to look askew (Fig. F-5). It will become smooth again when all of 
the PathMarkers are set to the appropriate sequence and all of the Y-axes are 
facing the correct direction.  

 

Fig. F-5 Setting the path sequence order (seqNum) 
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Appendix G. Add a Path-Following Vehicle 
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1. Adding a path-following vehicle: Open the World Editor Creator menu. Select 
Shapes, select Vehicles, and then choose one of the path-following vehicles 
(e.g., PathFollowingPickup1) (Fig. G-1). Highlight the vehicle and open the 
World Editor Inspector to set the criteria for the vehicle. 

 

Fig. G-1 Path-following vehicle: setting vehicle criteria 

2. Adapting the criteria. In the World Editor Inspector (F3), give the truck a 
name, enter the PathName, and disableMove (Fig. G-2).  

 

Fig. G-2 Path-following vehicle: adapting criteria 
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3. Adjust the vehicle’s speed. Right now the truck bounces from marker to 
marker. This is happening because the truck’s velocity is currently set to zero. 
To adjust the velocity (Fig. G-3), click on each marker and set a new speed 
(meters per second). Adjusting the speed of the vehicle at each marker allows 
for greater flexibility and control within the experiments.  

 

Fig. G-3 Path-following vehicle: adjusting the vehicle speed 
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INTENTIONALLY LEFT BLANK. 
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Appendix H. Trigger a Non-player Character  

                                                 
 This appendix appears in its original form, without editorial change. 
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It is possible to add a non-player character (NPC) to this Path starting at 
PathMarker1 at a specific time. To accomplish this task requires some 
programming and creation of three new TorqueScript files, which we named 
HRIexperimentAIplayer.cs, spawnNPC.cs, and triggerNPC.cs.  The code samples 
included below can be placed directly into your copy of RIVET.  Here, we provide 
the TorqueScript to include SoldierPlayer1 (the animations for this NPC have 
already been included in a previous version of RIVET and can be located in 
sim.base/data/shapes/soldier2 for the Soldiers, sim.base/data/shapes/terrorists for 
insurgents, and sim.base/data/shapes/player for the civilians).  

 
1. Initialize the NPCs (Soldier Player 1): Create a new TorqueScript file. Open 

a text file and add the following code block. This file will link to the people 
animations already available in RIVET. Save as a unique file name (e.g., 
HRIexperimentAIplayer.cs) in the following directory 
C:\RIVET\sim.base\server. This file initializes the NPC and allows them to be 
spawned on a path and to move on a path. For a reference point also look at a 
previously created Player file (simbase/server/aiPlayer.cs).  Green text 
represents comments in the TorqueScript code. All comments are also 
delineated with two forward slash lines at the beginning of the line.  
 

//----------------------------------------------------------------------------- 
// Initializing NPCs 
//----------------------------------------------------------------------------- 
//----------------------------------------------------------------------------- 
// AIPlayer callbacks 
// The AIPlayer class implements the following callbacks: 
// 
//    PlayerData::onStuck(%this,%obj) 
//    PlayerData::onUnStuck(%this,%obj) 
//    PlayerData::onStop(%this,%obj) 
//    PlayerData::onMove(%this,%obj) 
//    PlayerData::onReachDestination(%this,%obj) 
//    PlayerData::onTargetEnterLOS(%this,%obj) 
//    PlayerData::onTargetExitLOS(%this,%obj) 
//    PlayerData::onAdd(%this,%obj) 
// 
// Since the AIPlayer doesn't implement its own datablock, these callbacks 
// all take place in the PlayerData namespace. 
//----------------------------------------------------------------------------- 
function BasePlayer::onReachDestination(%this,%obj){ 
  if (%obj.crowd !$= "") { 
       %endPath = %obj.crowd.isEndOfPath(%obj.index); 
       if(%endPath)      { 
          AIPlayer::decideAction(%obj); 
       } 
  else { 
          AIPlayer::nextPathDestination(%obj); 
       } 
 } 
  else   { 
       //echo( "AIPlayer::onReachDestination warning - Crowd is blank!" ); 
 } 
    if (%obj.path !$= "") { 
       if (%obj.currentNode == %obj.targetNode) 
         %this.onEndOfPath(%obj,%obj.path); 
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  else 
         %obj.moveToNextNode(); 
 } 
 else   { 
     //echo( "AIPlayer::onReachDestination warning - Path is blank!" ); 
  } 
} 

 
function BasePlayer::onIdleOver(%this,%obj) { 
    if (%obj.crowd !$= "")   { 
       AIPlayer::decideAction(%obj); 
    } 
    else   { 
       //echo( "AIPlayer::onIdleOver warning - Crowd is blank!" ); 
  } 
} 
 
function BasePlayer::onMoveStuck(%this,%obj){ 
    if (%obj.crowd !$= "")   { 
       AIPlayer::stuck(%obj); 
    } 
    else   { 
       //echo( "AIPlayer::onMoveStuck warning - Crowd is blank!" ); 
    } 
} 
 
function BasePlayer::onEndOfPath(%this,%obj,%path) { 
    %obj.nextTask(); 
     // %obj.moveToNode(0); 
} 
 
function BasePlayer::onEndSequence(%this,%obj,%slot) { 
    echo("Sequence Done!"); 
    %obj.stopThread(%slot); 
    %obj.nextTask(); 
} 
 
//----------------------------------------------------------------------------- 
// SoldierPlayer1  
// Add this section for all NPCs that you have animations available 
//----------------------------------------------------------------------------- 
 
datablock PlayerData(SoldierPlayer1 : SoldierBodyType1) { 
    shootingDelay = 2000; 
}; 
 
function SoldierPlayer1::onReachDestination(%this,%obj) { 
    BasePlayer::onReachDestination(%this,%obj); 
} 
 
function SoldierPlayer1::onIdleOver(%this,%obj) { 
    BasePlayer::onIdleOver(%this,%obj); 
} 
 
function SoldierPlayer1::onMoveStuck(%this,%obj) { 
    BasePlayer::onMoveStuck(%this,%obj); 
} 
 
function SoldierPlayer1::onEndOfPath(%this,%obj,%path) { 
    BasePlayer::onEndOfPath(%this,%obj,%path); 
} 
 
function SoldierPlayer1::onEndSequence(%this,%obj,%slot) { 
    BasePlayer::onEndSequence(%this,%obj,%slot); 
} 
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//----------------------------------------------------------------------------- 
// AIPlayer static functions 
//----------------------------------------------------------------------------- 
 
function AIPlayer::spawn(%datablock, %name, %spawnPoint) 
{ 
    %player = new AIPlayer(){ 
  dataBlock = %datablock; 
     path = ""; 
    }; 
   echo("AIPlayer::spawn - Player:",%player); 
    MissionCleanup.add(%player); 
    %player.setShapeName(%name); 
    %player.setName( %name ); 
    %player.setTransform(%spawnPoint); 
   echo("AIPlayer::spawn - spawnPoint:",%spawnPoint); 
 
    return %player; 
} 
 
function AIPlayer::spawnOnPath(%datablock, %name, %path) { 

 // Spawn a player and place him on the first node of the path 
 echo("AIPlayer::spawnOnPath - Path:",%path); 
 if (!isObject(%path)) { 
       echo("AIPlayer::spawnOnPath - Cannot Find Path!"); 
  return; 
} 
%node = %path.getObject(0); 
echo("AIPlayer::spawnOnPath - Node:",%node); 
echo("AIPlayer::spawnOnPath - Node Transform:",%node.getTransform()); 
 %player = AIPlayer::spawn(%datablock, %name,%node.getTransform()); 
 echo("AIPlayer::spawnOnPath - Player:",%player); 
 
 return %player; 

} 
 
//----------------------------------------------------------------------------- 
// AIPlayer methods  
//----------------------------------------------------------------------------- 
 
function AIPlayer::followPath(%this,%path,%node) { 
   // Start the player following a path 
    echo("AIPlayer::followPath - Entered method.\n"); 
 
    %this.stopThread(0); 
     
 if (!isObject(%path)) { 
       %this.path = ""; 
       echo("AIPlayer::followPath - Attempting to follow bad path.\n"); 
       return; 
    } 
 
    if ((%node > %path.getCount() - 1)) 
       %this.targetNode = %path.getCount() - 1; 
    else 
       %this.targetNode = %node; 
       
    if (%this.path $= %path) 
       %this.moveToNode(%this.currentNode); 
    else { 
       %this.path = %path; 
       %this.moveToNode(0); 
       //%this.currentNode = 0;  
    } 
} 
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function AIPlayer::moveToNextNode(%this) 
{ 
    if (%this.targetNode < 0 || %this.currentNode < %this.targetNode) { 
      if (%this.currentNode < %this.path.getCount() - 1) 
          %this.moveToNode(%this.currentNode + 1); 
       else 
          %this.moveToNode(0); 
    } 
    else 
       if (%this.currentNode == 0) 
         %this.moveToNode(%this.path.getCount() - 1); 
       else 
          %this.moveToNode(%this.currentNode - 1); 
} 
 
function AIPlayer::moveToNode(%this,%index) 
{ 
    // Move to the given path node index 
    %this.currentNode = %index; 
    %node = %this.path.getObject(%index); 
    %this.setMoveDestination(%node.getTransform(), %index == %this.targetNode); 
} 
 
 
function AIPlayer::pushTask(%this,%method) { 
   if (%this.taskIndex $= ""){ 
       %this.taskIndex = 0; 
       %this.taskCurrent = -1; 
    } 
    %this.task[%this.taskIndex] = %method;  
    %this.taskIndex++; 
    if (%this.taskCurrent == -1) 
       %this.executeTask(%this.taskIndex - 1); 
} 
 
function AIPlayer::clearTasks(%this) { 
    %this.taskIndex = 0; 
    %this.taskCurrent = -1; 
} 
 
function AIPlayer::nextTask(%this) { 
    if (%this.taskCurrent != -1) 
       if (%this.taskCurrent < %this.taskIndex - 1) 
          %this.executeTask(%this.taskCurrent++); 
       else 
          %this.taskCurrent = -1; 
} 
 
function AIPlayer::executeTask(%this,%index) { 
    %this.taskCurrent = %index; 
    eval(%this.getId() @ "." @ %this.task[%index] @ ";"); 
} 
 
//----------------------------------------------------------------------------- 
function AIPlayer::singleShot(%this) 
{ 
    // The shooting delay is used to pulse the trigger 
    %this.setImageTrigger(0,true); 
    %this.setImageTrigger(0,false); 
    %this.trigger = %this.schedule(%this.shootingDelay,singleShot); 
} 
//----------------------------------------------------------------------------- 
 
function AIPlayer::wait(%this,%time) { 
    %this.schedule(%time * 1000,"nextTask"); 
} 
 
function AIPlayer::done(%this,%time) { 
    %this.schedule(0,"delete"); 
} 
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function AIPlayer::fire(%this,%bool) { 
    if (%bool) { 
       cancel(%this.trigger); 
       %this.singleShot(); 
    } 
    else 
       cancel(%this.trigger); 
     %this.nextTask(); 
} 
 
function AIPlayer::aimAt(%this,%object){ 
    echo("Aim: " @ %object); 
    %this.setAimObject(%object); 
    %this.nextTask(); 
} 
 
function AIPlayer::animate(%this,%seq) { 
    echo("Set animation: " @ %seq); 
    //%this.stopThread(0); 
    //%this.playThread(0,%seq); 
    %this.setActionThread(%seq); 
} 
return %player; 
 

2. In the same directory, open game.cs and add an executable (exec) function to 
this file around lines 190-200   exec("./HRIexperimentAIplayer.cs"); This will 
allow the new file to be executed during the Mission run. Please note that the 
exec function is colored purple. If you use Torsion IDE for developing code, all 
exec functions are purple (refer to pg. 38 for more information on Torsion).  
 

3. Open the Mission file HRIExperiment1.mis (located in 
C:\RIVET\sim.base\data\user_missions) and update the initial mission info:  
new ScriptObject(MissionInfo).  This allows the Mission File to call to the 
AIplayer information.  
 

   new ScriptObject(MissionInfo) { 
         name = "RIVET TR Example: HRI Experiment 1"; 
         desc0 = "Designed by Dr. K.E. Schaefer, ARL"; 
         aiPlayerFile = "HRIexperimentAIplayer.cs";         
         descLines = "1"; 
         map = "ARL_world"; 
}; 
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4. Add TorqueScript File to Spawn a NPC:  Add the following code block into 

a text file and save as spawnNPC.cs in the following directory 
C:\RIVET\sim.base\server.  This will allow NPCs to be created by a trigger file. 

$tickNumber = 0; 
$TotalExposureTime = 0; 
 
//Hook into the mission editor ----------------------------------------------------------------------------- 
function spawnNPCTrigger::create(%data) { 
 echo("spawnNPCTrigger::create");   
 // The mission editor invokes this method when it wants to create an object of the given datablock type. 
     %obj = new spawnNPCTrigger() { 
    dataBlock = %data; 
 }; 
return %obj; 
} 
 
// dummy datablock needed to create a trigger 
// the values in this datablock are not used 
 
datablock TriggerData(spawnNPCTrigger) { 
     tickPeriodMS = 100; 
}; 
 
//Events ------------------------------------------------------------------------ 
//this event is fired from the mission editor when a spawnNPCTrigger is added 
 
function spawnNPCTrigger::onAdd(%this,%obj) //this event is fired from the mission editor 
{ 
   Parent::onAdd(%this,%obj); 
   echo("spawnSoldierTrigger::onAdd"); 

 %size = %this.triggerRadius; 
    %scale = VectorScale(%obj.scale,%size*2); 
    %sizeVec = %size @" "@ %size @" "@ %size; 
    %pos = VectorAdd(%obj.position,%sizeVec); 
    // now we have to give the static shape a controlling trigger of the right size and location 
    %trigger = new Trigger() { 

      dataBlock = spawnSoldierTrigger; 
        position = %pos; 
        rotation = %obj.rotation; 
        scale = %scale; 

 polyhedron = "0.000000 1.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 -1.0000000 
0.0000000 0.0000000 0.0000000 1.0000000"; 

    }; 
    %trigger.setActive(true); 
    %trigger.setOwner(%obj); 
    %obj.setTrigger(%trigger); 
} 
 
//this event is fired when an object enters the trigger 
 
function spawnNPCTrigger::onEnterTrigger(%this,%trigger,%obj)  
{ 
    if(strcmp(%obj.getName(), "user1") == 0)    {     
      echo("spawnNPCTrigger::onEnterTrigger spawning " @ %trigger.npcType @ " on path " @ 
%trigger.npcPath); 
      echo("Vehicle name " @ %obj.getName() );  
      %player = AIPlayer::spawnOnPath(%trigger.npcType,"SoldierNPC",%trigger.npcPath); 
      %player.followPath(%trigger.npcPath,-1);  
      %player.setMoveSpeed(0.4);//m/s 
     // %player.setInventory(M4,1); 
    // %player.setInventory(M4Ammo,100); 
    // %player.mountImage(M4Image,0);   
   } 
} 
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5. In the same directory, open game.cs and add an exec function to this file around 
lines 190-200   exec("./spawnNPC.cs");  This will allow the new file to be 
accessed during the Mission run. 
 

6. Add a Trigger to the Mission File:  A trigger will be represented by a pink 
box in the VE. When your Player Character (e.g., Soldier or vehicle) crosses 
through the Trigger point, it will initiate the Spawn function of the NPC at Path 
Marker 1.  Open Mission File and add this code.   
 

new Trigger(NPC1) {        
 position = "-12.899 44.4245 0.8"; 

 rotation = "0 0 1 213.805"; 
 scale = "10 3 2"; 
 dataBlock = "spawnNPCTrigger";      
 polyhedron = "0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 -1.0000000 

0.0000000 0.0000000 0.0000000 1.0000000"; 
 onGroup = "Default Value"; 
 npcType = "SoldierPlayer1"; 
 npcPath = "MissionGroup/ExamplePath"; 
}; 

 
NPC1:  This is the name we provided to this Non-Player Character.  You can 
edit this to be a unique name. 

Position: This is the location of where the Trigger will be located in the VE. A 
good starting point is either near the initial SpawnSphere or near your 
PathMarker1.  You will be able to move it to wherever you need when you open 
the VE.   

Rotation: This is the orientation of the Trigger. It is adaptable within the VE. 

Scale:  This is the size of the Trigger.  It is adaptable. 

dataBlock:  This is what calls to the spawnNPC.cs file to create the NPC. 

npcType:  This tells the spawnNPC.cs which character you want to create.  **If 
you directly copy these TorqueScript files into your version of RIVET, you will 
only have access to SoldierPlayer1.   

npcPath:  This lets you set which path you want your NPC Soldier to be 
located.  It is adaptable.   

 
** If you want to trigger more Soldiers to this same path, all you need to do is add 
the code from Step #6 to the Mission file and move the location of the Trigger to 
meet your needs for the experimental Design. 
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Appendix I. Delete a Non-player Character with a Trigger   
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1. Delete a NPC: There may be times that you want to delete the NPC.  Add the 

following code to the SpawnNPC.cs file 

 
//----------------------------------------------- 
//Delete NPC at a Trigger 
//---------------------------------------------- 
 
datablock TriggerData(deleteNPCTrigger) 
{ 
     tickPeriodMS = 100; 
}; 
 
function deleteNPCTrigger::onEnterTrigger(%this,%trigger,%obj) 
{ 
    if(isObject(SoldierNPC) || isObject(Civilian)) 
    { 
     echo("deleteNPCTrigger::onEnterTrigger deleting " @ %obj.getname()); 
     %obj.applyDamage(10000);     
      // %obj.delete(); 
   } 
} 
 

2. Add a Delete Trigger to the VE: Add the following code to the 
HRIExperiment1.mis file to create the Delete NPC trigger 

new Trigger(delete_NPC1) { 
     position = "-36.6411 -71.5004 0.4"; 
     rotation = "0 0 -1 88.8997"; 
     scale = "5 3 2"; 
     dataBlock = "deleteNPCTrigger"; 

     polyhedron = "0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 -1.0000000 
0.0000000 0.0000000 0.0000000 1.0000000"; 

}; 
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Appendix J. Creating Crowds 
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1. Open the Crowd Editor. Double-click the CrowdEditor.exe file located in 
C:\RIVET\support\Crowd Tool. 

2. Load the Map. The map is loaded by selecting File from the menu in the upper-
left-hand corner of the application and choosing Load Map (Fig. J-1). This will 
bring up a dialog box to select the map file from the computer.  

 

Fig. J-1 Crowd Editor menu 

3. Add a Crowd. Click Add in the upper-right corner (Fig. J-2). Another GUI will 
open where the name of the crowd is entered. Currently, for the software to 
work properly, the crowds must be named Crowd1, Crowd2, … Crowdn, where 
n is the number for the last Crowd in the scene. This will generate information 
in the crowd list.  

 

Fig. J-2 Add a crowd
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4. Adjust the Crowd’s Properties. The default settings will be used in the 
properties menu unless the destination count, people count, and percent idle are 
changed. The crowds are grouped in tens and each person type can be selected 
out of the possible choices (Fig. J-3). 

 

Fig. J-3 Crowd properties menu 
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5. Define the Location for the Crowd. Choose the size of the brush using the 
Painting slider (Figs. J-4 and J-5). This will adjust the area of the brush. The 
outline choice is either a rectangle or a circle, which is the default. The Erase 
Radio button is used to undo any painting previously done. 

 

Fig. J-4 Crowd Location menu 

 

 

Fig. J-5 Crowd location area 
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6. Generate the Contour. The tolerance for the contour generation is set to 5.0. 
By clicking on Generate Contours, the application will outline the area set for 
the crowd (Figs. J-6 and J-7). 

 

Fig. J-6 Generate Contour menu 

 

 

Fig. J-7 Contour area 
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7. Save Mission. Choose Save Mission from the menu and then find the mission 
file (.mis) with which this crowd will be associated. It will ask, “Do you want 
to overwrite?” Click yes and it will add the following to the end of the 
TorqueScript file. These are the parameters set in the GUI. The positions are 
the corners of the boundary line around the contour, which will enable RIVET 
to create the crowd area inside the application. 

new Crowd(Crowd1) { 
      PeopleCount = "10"; 
      DestinationCount = "10"; 
      IdlePercent = "0.25"; 
      IdleTime = "1 2"; 
      AvailablePerson[0] = "CivMale"; 
      AvailablePerson[1] = "CivFemale"; 
      AvailablePerson[2] = "MalePlayer1"; 
      AvailablePerson[3] = "MalePlayer2"; 
      AvailablePerson[4] = "FemalePlayer1"; 
      AvailablePerson[5] = "FemalePlayer2"; 
      AvailablePerson[6] = "FemalePlayer3"; 
      AvailablePerson[7] = "FemalePlayer4"; 
      AvailablePerson[8] = "SoldierPlayer1"; 
      AvailablePerson[9] = "SoldierPlayer2"; 
      Positions = "10.8 3.2,11.2 -25.2,16.4 -25.2,16.4 -3,24 -2.4,23.6 3.2"; 
   }; 
 

Once a mission is complete, there is always an opportunity to make changes by 
choosing File, Load Crowds from the main menu and selecting the mission to 
change. This selection will then read in the crowd details in the GUI and allow 
changes to any part of the crowd. Ensure that Generate Contours is selected before 
saving if the contour is repainted. 
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8. Example. An example of the way to script a file for crowds is in the 
crowdAIplayer.cs file. Once the mission is launched, the crowds will appear. 
An overhead view from the World Editor in Fig. J-8 shows 3 crowds labeled 1, 
2, and 3. The blue squares are the contour points noted in the mission file. The 
green lines are contour boundaries while the red squares are the destination 
points to which the crowd participants will travel. These points are chosen 
randomly for each AI player entity. 

 

Fig. J-8 Overhead view of multiple crowds in World Editor 
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Appendix K. Loading the CARVE Application



 

Approved for public release; distribution is unlimited. 

122 

1. Setup. Prior to opening CARVE, check to make sure that both the RIVET 
Server computer, and the RIVET BOLT computer user mission directories 
include the Mission File (.mis), Terrain File (.ter), Map (.png), and associated 
.cs file. Specific directions on how to build these files are in Appendix B.  

 

Fig. K-1 Required files  

2. Start RIVET Server. Click on RIVET shortcut. Set vehicle to be a 
BOLT-enabled vehicle, select the User Mission, and click Launch Mission (Fig. 
K-2). 

 

Fig. K-2 Start RIVET Server computer with BOLT-enabled vehicle 
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3. Start RIVET Client. Mount the BOLT sensor. This option allows users to 
BOLT an additional sensor on the vehicle and is required if the user will be 
using the CARVE interface. After selecting the Mount Sensor button, a new 
GUI menu will open. At this time, check to make sure the vehicle name is set 
to user 1 [1], and that the sensor selected is the BOLT sensor [2]. Next, click on 
Find Servers [3], select the correct IP, and select Mount Sensor [4] (Fig. K-3).  

 

 

Fig. K-3 Mount the RIVET BOLT sensor to the vehicle using the Client computer 
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It is also possible to customize the sensors through the sensor drop-down menu 
(Fig. K-3, [2]).Vehicles are equipped with various sensors that are configurable 
through the Sensor Configuration GUI (Fig. K-4). 

 

Fig. K-4 Sensor Configuration GUI 

The vehicles are selected in the drop-down box (Fig. K-5). These are 
configurable prior to the load mission menu using vehicle configuration GUI. 
Sensors that were configured are added to each vehicle configuration with a 
given position and orientation. 

 

Fig. K-5 Vehicle configuration 
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Sensors can be local to the server or loaded on the Client machine and added 
through the Mount Sensor GUI (Fig. K-6). 

 

Fig. K-6 Mount Sensor GUI 

4. Open CARVE. Now that both the RIVET server and RIVET client BOLT 
sensor computers are activated, click on the CARVE shortcut icon (Fig. K-7). 

 

Fig. K-7 CARVE shortcut icon 

5. Check Connectivity. Check connectivity to make sure that CARVE can “talk” 
to the RIVET Server and Client machines (Figs. K-8 and K-9). 

 

Fig. K-8 CARVE Connectivity tool 
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Fig. K-9 Check connectivity with RIVET machines 

6. Connect CARVE to RIVET. During this initialization phase, CARVE will be 
receiving the map from RIVET (Fig. K-10). This can take upwards of a minute.  

 

Fig. K-10 Map upload from RIVET to CARVE  
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7. Failure to Open. If CARVE is unable to receive the map, it will provide an 
error message. At this point, follow the directions in Section 6.1 to identify the 
issue. If CARVE successfully loaded, the video sensor will appear in the main 
screen window. 

 

Fig. K-11 Example of the CARVE failure to load map screen 

8. Saving the Map. For faster future loading, it is important to save the Map. First, 
open the map (Fig. K-12). 

 

Fig. K-12 Saving the map in CARVE: open the map 
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9. Select Map Save Icon. Once the map is opened, choose the select map save 
icon (Fig. K-13). 

 

Fig. K-13 Saving the map in CARVE: select map save icon 

10. Save Map: When saving the map, use a unique Map name and write it down 
because it is used when creating a CARVE Mission-specific shortcut (Fig. K-
14). 

 

Fig. K-14 Saving the map in CARVE: assign a unique map name 
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11. Close CARVE. Exit the program by selecting the exit program icon (Fig. K-
15).  

 

Fig. K-15 Saving the map in CARVE: exit the program 

12. Create CARVE Mission Shortcut. This shortcut pre-loads the map and 
reduces wait time (Fig. K-16). On the desktop, right click on the CARVE 
shortcut, and select Create Shortcut. Rename the new CARVE shortcut. 

         

Fig. K-16 Create a CARVE shortcut for a specific mission
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13. Edit Properties. Right click on the new shortcut, and select properties. Add a 
space and /map:Maps\HRIexperiment1.rmap (or whatever you named your 
map) to the end of the Target (Fig. K-17). Now, the map will instantaneously 
load when selecting the new CARVE shortcut.  

 

Fig. K-17 Naming the new CARVE shortcut with the specific mission map 
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Appendix L. CARVE Directions for Waypoint Following
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1. Adding Waypoints for Semi-Autonomous Navigation. Open a User Mission 
within CARVE (see Appendix J, steps 1–6). Open the Map (see Appendix J, 
step 8). The following waypoint options are available (Fig. L-1): 

A. Add waypoint 
B. Delete waypoint 
C. Move waypoint 
D. Move spot report point 
E. Map position (on/off). On: Center vehicle on map; Off: Click on vehicle and move 

around map 
F. Zoom 
G. Return zoom to 0% 
H. Save map 
I. Save waypoints 
J. Slider for zooming map 

 

 

Fig. L-1 CARVE waypoint options 
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2. Add Waypoints. Click on the bull’s-eye with the plus sign to add waypoints 
(Fig. L-2). Then click in the map. The first waypoint should be close to where 
the vehicle is located. The mouse is now an orange bull’s-eye. 

 

Fig. L-2 How to add navigation waypoints 

 
3. Dynamic Actions. Every time a waypoint is added, an Action screen will 

appear (Fig. L-3). This allows the user to customize the waypoints.  

 

Fig. L-3 How to customize dynamic waypoint actions 
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4. Stop Waypoint. The Stop waypoint stops the vehicle or robot in that location 
for a set duration (in seconds) (Fig. L-4).  

 

Fig. L-4 How to use the Stop waypoint action 

 
5. SetSpeed Waypoint. This waypoint action allows you to change the speed of 

the vehicle or robot at a given location (in miles per hour) (Fig. L-5).   

 

Fig. L-5 How to use the SetSpeed waypoint action 
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6. Finished Adding Waypoints. When you have finished adding waypoints to 
the map, click on the bull’s-eye with the plus sign to exit this mode (Fig. L-6).  

 

Fig. L-6 How to stop adding waypoints 

 
7. Adjust Waypoints. It is possible to adjust the waypoints that were previously 

placed on the map by clicking on the left mouse button and dragging the 
waypoint (Fig. L-7). 

 

Fig. L-7 How to adjust waypoints 
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8. Adjust Actions. It is also possible to adjust or edit the Actions by clicking on 
waypoint with the right mouse button (Fig. L-8). 

 

Fig. L-8 How to adjust waypoint actions 

 
9. Close Edit Menu. To close this menu, select the blue box (Fig. L-9).  

 

Fig. L-9 How to close waypoint edit menu 
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10. Save Waypoints. Select the “save waypoints” button on left-hand side of the 
screen (Fig. L-10). This will open a save window. Enter a unique file name 
(e.g., WaypointsHRIexperiment1) and click Save. Write down the file name 
because it will be needed for step 12. 

 

Fig. L-10 How to save waypoints 

11. Exit CARVE. Exit CARVE to set up the application to automatically load the 
waypoint file in the future.  
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12. Setting up Automatic Loading of Waypoints. Right click on the CARVE 
shortcut, click on properties, and add a space, followed by 
/Waypoints:WaypointHRIexperiment1.txt in the Target (Fig. L-11). Press 
Apply and Ok. Now when you log back into CARVE, your saved map and 
waypoints will already be loaded. Waypoints can be edited at any time, just 
remember to save.  

 

Fig. L-11 Set up automatic loading of waypoints in the CARVE shortcut properties 
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Appendix M. Directions to Set Up the Radar Task
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1. Setting up the Radar Task. CARVE is set up to allow users to accomplish a 
secondary task while attempting to conduct a primary task such as monitoring 
the unmanned vehicle. This appendix provides the steps needed to set up and 
run the radar task. Once the CARVE application is open, click on the Steering 
Wheel (a User Mission from RIVET is not required during setup of the radar 
task) (Fig. M-1).  

 

Fig. M-1 Select the Vehicle Operations submenu to set up the task  

2. Open Radar Menu. To open the Radar menu, click on Waypoint Follow 
and Save Waypoints icons (Fig. M-2). 

 

Fig. M-2 Open radar menu 
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3. Radar Run Setup Screen. The Run Setup Screen GUI allows the researcher to 
prepare the user for the upcoming data collection. As shown in Fig. M-3, the 
run name (1) is entered along with the path name (2) if a secondary task will be 
used during the run. The radar check box (4) must be selected for the radar task 
to start. The safety zone (5) sets the radius from the center of the radar screen. 
Any blip that enters this safety zone is then changed from friendly to enemy by 
changing the color from yellow to red. The path name coincides with a text file 
that is created by clicking on the create path file (3). 

 

Fig. M-3 Radar Run Setup Screen GUI 
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4. Radar Path Creation. The button opens the Radar Path Creation Screen (Fig. 
M-4). The X and Y coordinates are shown in the list box (1). The text file name 
is entered in the text box (2). To enter the point, press the Click on Radar point 
button (3) and then click inside the radar screen (3a). This will enter the point 
in (1). This process is repeated to make a path. Upon the addition of a second 
and any successive points, the path is drawn in red inside the radar screen (3a). 
Once the path is complete, enter a path length in seconds (4) as well as the 
length of pause between this path and the next one (5). If satisfied with the path, 
click save path (6) and the number of completed paths will increase in the label 
to the right of the save button. Once all the paths are completed, click Ok. 
Clicking the Clear button will clear all the data from the screen, while the cancel 
button will close out the GUI without saving anything.  

 

Fig. M-4 Radar Path Creation Screen GUI 
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5. Path Data Output. The default file name entered is PathFileName and should 
be changed by the user. It is recommended that radar files be named according 
to run name to help with setup and record keeping. This file is saved in the 
bin\Release\Radar folder. Each file should have a unique name.  If the path file 
name is the same as a previous file, it will overwrite that previous file.  The 
radar path text file has X and Y coordinates on the same line separated by a 
comma. For parsing, each path is separated by newPath (Fig. M-5). The 
timeline is followed by a series of numbers that represent the time to complete 
the path followed by the time between paths. 

 

 

Fig. M-5 Sample data output of radar paths 
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List of Symbols, Abbreviations, and Acronyms 

3-D 3-dimensional 

AAR after-action review 

ARIBO applied robotics for installations and base operations 

ARL US Army Research Laboratory 

BOLT basic operations layer transmissions  

CACTF combined arms collective training facility 

CARVE Control of Autonomous Robotic Vehicle Experiment  

GDRS General Dynamics Robotic Systems 

GUI graphical user interface 

HITL human-in-the-loop 

HRI human-robot interaction 

IP Internet protocol 

LAN local area network 

NPC non-player character 

PIP picture-in-picture 

RCTA Robotics Collaborative Technology Alliance 

RIVET Robotic Interactive Visualization and Experimentation 
Technology 

SQL structured query language 

TAC-C tactical autonomous combat chassis 

TF task force 

TGE Torque Game Engine 

UAV unmanned air vehicle 

UDP user datagram protocol 
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VE virtual environment 

WEI World Editor Inspector 

 



 

Approved for public release; distribution is unlimited. 

147 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 2 DIRECTOR 
 (PDF) US ARMY RESEARCH LAB 
  RDRL CIO LL 
  IMAL HRA MAIL AND  
  RECORDS MGMT 
 
 1 GOVT PRINTG OFC 
 (PDF) A MALHOTRA 
 
 14 DIR USARL 
 (PDF) RDRL HR 
   L ALLENDER 
   P FRANASZCZUK 
  RDRL HRM 
   K MCDOWELL 
  RDRL HRS 
   J LOCKETT 
   K OIE 
  RDRL HRS E 
   S HILL 
   K SCHAEFER 
  RDRL VTA 
   J BORNESTEIN 
   M FIELDS 
   R BREWER 
   M CHILDERS 
   C LENNON 
   H EDGE 
   C KRONIGER 
 
 3 ROBOTICS CLLBRTV 
 (PDF) TECHNLGY ALLNCE 
  GEN DYNAMICS 
  D PATEL 
  E WELLER 
  C DIBERARDINO 
 
 4 UNIV OF CENTRAL FLORIDA 
 (PDF) F JENTSCH 
  P HANCOCK 
  S FIORE 
  D BARBER 
 



 

 148 

INTENTIONALLY LEFT BLANK. 


	List of Figures
	Acknowledgments
	1. Summary
	2. Introduction
	2.1 Human-Robot Interaction
	2.2 HRI and Computer-Based Simulation

	3. RIVET and CARVE for HRI Experimentation
	3.1 Overview of RIVET
	3.1.1 General Capabilities
	3.1.2 Hardware/Software Considerations
	3.1.3 RIVET Menu Options

	3.2 Overview of CARVE

	4. Procedures for Using RIVET for HRI Experimentation
	4.1 Initial Research Definition
	4.2 Setting up the Mission
	4.2.1 Virtual Terrain
	4.2.2 Static Objects
	4.2.3 Dynamic Objects: Vehicles
	4.2.4 Dynamic Objects: People

	4.3 Robot Autonomy
	4.3.1 Teleoperation, Remote Control, Manual Control
	4.3.2 Waypoint Following
	4.3.3 Autonomous Capabilities

	4.4 Alternative Tasks
	4.5 Manipulating and Measuring HRI

	5. Previous HRI Research Using RIVET
	5.1 Cordon and Search
	5.1.1 Target Detection: Person
	5.1.2 Target Detection: Object
	5.1.3 Navigation
	5.1.4 Transparency

	5.2 Gunnery
	5.3 Driverless Vehicle Transport

	6. Discussion
	6.1 Lessons Learned
	6.1.1 Problem No. 1: CARVE Does Not Always Load Correctly
	6.1.2 Problem No. 2: CARVE Takes Too Long to Load
	6.1.3 Problem No. 3: Picture Quality Is Granulated or Pixelated
	6.1.4 Problem No. 4: Camera Sensor Is Located in the Wrong Place
	6.1.5 Problem No. 5: Need to Customize Pre-loaded Animation Sequences
	6.1.6 Problem No. 6: Removing Add-ons from Pre-loaded Graphics and Animations

	6.2 Support and Documentation
	6.2.1 RIVET Developer’s Guide
	6.2.2 GarageGames.com Online Forums and Documentation
	6.2.3 The Game Programmer’s Guide to Torque
	6.2.4 Scripting
	6.2.5 Animations
	6.2.6 Other Torque Resources


	7. Conclusions
	8. References
	Appendix A. RIVET Menus
	Appendix B. CARVE Menus
	Appendix C. Creating a New Mission: Load RIVET
	Appendix D. Creating a New Mission: Editing the Terrain
	Appendix E. Add Static Objects
	Appendix F. Creating a Path
	Appendix G. Add a Path-Following Vehicle
	Appendix H. Trigger a Non-player Character1F(
	Appendix I. Delete a Non-player Character with a Trigger2F(
	Appendix J. Creating Crowds
	Appendix K. Loading the CARVE Application
	Appendix L. CARVE Directions for Waypoint Following
	Appendix M. Directions to Set Up the Radar Task
	List of Symbols, Abbreviations, and Acronyms

